Opendata, web and dolomites

MagProtoCell

Magnetic micromachines based on protocell design and engineering

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MagProtoCell project word cloud

Explore the words cloud of the MagProtoCell project. It provides you a very rough idea of what is the project "MagProtoCell" about.

micromachines    surrounding    spatial    movement    colloidal    last    multidisciplinary    particles    sense    construct    regard    dr    progress    clean    few    external    concentrations    materials    guez    mf    artificial    arco    chemicals    responsive    functions    prof    temporal    rodr    protocell    thereby    locations    involve    made    origin    university    chemical    medium    motility    composition    magnetic    construction    disposition    of    expertise    engineering    metabolism    cutting    strategic    directed    alternative    selective    stimulate    frs    stimuli    noncontact    methodology    group    levels    local    lifelike    ways    leadership    inclusion    date    forces    exchange    protocells    fluidic    class    remote    encapsulation    machines    synthetic    couple    earth    stepping    chemotaxis    stone    biomimetic    drug    bioreactor    diagnosis    bristol    cellular    replication    iacute    hosting    enhanced    mfs    mann    employing    outcome    edge    sensing    environments    life    exhibiting    clinical    environment   

Project "MagProtoCell" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF BRISTOL 

Organization address
address: BEACON HOUSE QUEENS ROAD
city: BRISTOL
postcode: BS8 1QU
website: www.bristol.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.bristol.ac.uk
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 183˙454.00

Map

 Project objective

Protocells are artificial cellular systems exhibiting lifelike properties, which are proposed as a stepping-stone for understanding the origin of life on Earth. Features such as encapsulation, replication, metabolism and selective exchange of chemicals with the environment will enable their use as micromachines in a number of emerging applications (e.g., environment clean-up, clinical diagnosis, drug delivery, remote sensing, bioreactor technology). However, progress in such applications will be enhanced by the synthetic construction of protocells capable of directed movement in fluidic environments in response to external stimuli. To date, motility has been achieved only in a few cases, which involve a response to changes in chemical concentrations (chemotaxis) in the surrounding medium. However, controlling the chemical composition of the local environment is challenging, and thus alternative ways to stimulate motility are needed. In this regard, external magnetic fields (MFs) will enable high levels of control of protocell motility and spatial disposition to be achieved by employing noncontact forces. This is the aim of this proposal: to design and construct synthetic protocells able to sense and respond to external MFs. A key outcome of the work will be the development of a new class of magnetic micromachines based on protocell design and engineering. Such machines will couple MF-directed motility with the temporal and spatial delivery of advanced biomimetic functions. The key factor of the proposed methodology is the inclusion of colloidal magnetic particles at strategic locations in the protocell composition or in the external medium. Thereby, the expertise of the applicant (Dr. Rodríguez Arco) in the field of MF-responsive materials will be applied to the multidisciplinary and cutting-edge field of protocells in which the hosting group at the University of Bristol (under the leadership of Prof. Mann FRS) has made great progress in the last few years.

 Publications

year authors and title journal last update
List of publications.
2017 Laura Rodriguez-Arco, Mei Li, Stephen Mann
Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects
published pages: TBC, ISSN: 1476-1122, DOI: 10.1038/nmat4916
Nature Materials TBC 2019-07-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAGPROTOCELL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAGPROTOCELL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Comedy and Politics (2018)

The Comedy of Political Philosophy. Democratic Citizenship, Political Judgment, and Ideals in Political Practice.

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

PocketLight (2020)

Compact all-fibre nonlinear resonators as technological platform for a new generation of miniaturised light sources.

Read More