Opendata, web and dolomites

eAXON SIGNED

Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 eAXON project word cloud

Explore the words cloud of the eAXON project. It provides you a very rough idea of what is the project "eAXON" about.

fifth    nervous    addressable    skin    too    tissues    individually    significantly    spinal    blind    neurological    solutions    visual    implantation    performing    microstimulators    stimulated    electroceuticals    thread    rectifiers    wireless    density    neighbouring    garments    interfaces    patients    neuroprosthetic    cochlear    flexible    invasiveness    surgeries    units    energy    stimulation    implanted    bursts    central    hamper    electronic    injection    fact    performed    minimizing    electrical    channel    inductive    diameter    body    supplied    hindering    mobile    miniaturization    living    nowadays    solution    electrodes    injury    sources    flexibility    materials    demanding    paralysis    cortical    domain    innovative    consist    deaf    previously    match    tried    did    shaped    engineering    innocuous    coupling    cord    pieces    suffering    sites    operate    consists    stiff    prevented    explore    parts    single    frequency    look    human    reduce    fascinating    disorders    volume    attempts    satisfactory    batteries    implants   

Project "eAXON" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD POMPEU FABRA 

Organization address
address: PLACA DE LA MERCE, 10-12
city: BARCELONA
postcode: 8002
website: www.upf.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 1˙999˙813 €
 EC max contribution 1˙999˙813 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD POMPEU FABRA ES (BARCELONA) coordinator 1˙999˙813.00

Map

 Project objective

To build interfaces between the electronic domain and the human nervous system is one of the most demanding challenges of nowadays engineering. Fascinating developments have already been performed such as visual cortical implants for the blind and cochlear implants for the deaf. Yet implantation of most electrical stimulation systems requires complex surgeries which hamper their use for the development of so-called electroceuticals. More importantly, previously developed systems based on central stimulation units are not adequate for applications in which a large number of sites must be individually stimulated over large and mobile body parts, thus hindering neuroprosthetic solutions for patients suffering paralysis due to spinal cord injury or other neurological disorders. A solution to these challenges could consist in developing addressable single-channel wireless microstimulators which could be implanted with simple procedures such as injection. And, indeed, such solution was proposed and tried in the past. However, previous attempts did not achieve satisfactory success because the developed implants were stiff and too large. Further miniaturization was prevented because of the use of inductive coupling and batteries as energy sources. Here I propose to explore an innovative method for performing electrical stimulation in which the implanted microstimulators will operate as rectifiers of bursts of innocuous high frequency current supplied through skin electrodes shaped as garments. This approach has the potential to reduce the diameter of the implants to one-fifth the diameter of current microstimulators and, more significantly, to allow that most of the implants’ volume consists of materials whose density and flexibility match those of neighbouring living tissues for minimizing invasiveness. In fact, implants based on the proposed method will look like short pieces of flexible thread.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EAXON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EAXON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

DDREAMM (2020)

Dna Damage REsponse: Actionabilities, Maps and Mechanisms

Read More  

INFANT MEMORIES (2020)

Dissecting hippocampal circuits for the encoding of early-life memories

Read More