Opendata, web and dolomites

PATHORISC SIGNED

Reprogramming of small RNA function in plant-pathogen interactions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PATHORISC" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 1˙987˙811 €
 EC max contribution 1˙987˙811 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 1˙987˙811.00

Map

 Project objective

RNA silencing relies on small RNAs that act in RNA induced silencing complexes (RISCs). RISCs use base pairing to select mRNAs or invading nucleic acids such as viruses for repression. RNA silencing may facilitate gene expression changes, for example in host-pathogen interactions. Such changes require reprogramming of RISC, since a different set of RNAs must be rapidly repressed upon pathogen perception. RISC reprogramming is non-trivial: new small RNAs must be produced and be rapidly incorporated into RISC, while unwanted repression by pre-existing RISCs must be eliminated. This project focuses on understanding three central aspects of RISC reprogramming in plant-pathogen interactions. First, we will define mechanisms that allow invading RNA, but not self-RNA, to engage in positive feedback loops for small RNA synthesis, and we will investigate the specific importance of these positive feedback loops in antiviral defense. Second, we will explore how rapid proteolysis of the central RISC component ARGONAUTE1 (AGO1) governs rapid incorporation of newly synthesized small RNA. We will also explore the hypothesis that non-RNA bound AGO1 is degraded to minimize vulnerability to pathogens that use small RNAs as virulence factors to repress host immune signaling. The relevance of these mechanisms of AGO1 proteolysis in plant immunity will be investigated. These studies take advantage of our recent discovery of proteins required specifically for turnover of AGO1. Finally, we explore the hypothesis that rapid chemical modification of mRNA by N6-adenosine methylation (m6A) may bring mRNAs with poor small RNA binding sites under RISC repression. This scenario is supported by interactions between m6A reader proteins and AGO1 discovered in current work in the group. This mechanism may enable reprogramming of RISC specificity rather than composition upon pathogen perception. Our project will fill gaps in knowledge on RNA silencing and elucidate their importance in plant immunity.

 Publications

year authors and title journal last update
List of publications.
2018 Laura Arribas-Hernández, Simon Bressendorff, Mathias Henning Hansen, Christian Poulsen, Susanne Erdmann, Peter Brodersen
An m 6 A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis
published pages: 952-967, ISSN: 1040-4651, DOI: 10.1105/tpc.17.00833
The Plant Cell 30/5 2019-02-25

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PATHORISC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PATHORISC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Neuro-UTR (2019)

Mechanism and functional impact of ultra-long 3’ UTRs in the Drosophila nervous system

Read More  

PROTECHT (2020)

Providing RObust high TECHnology Tags based on linear carbon nanostructures

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More