Opendata, web and dolomites

FRAPPANT SIGNED

Formal Reasoning About Probabilistic Programs: Breaking New Ground for Automation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FRAPPANT project word cloud

Explore the words cloud of the FRAPPANT project. It provides you a very rough idea of what is the project "FRAPPANT" about.

code    though    whereas    describe    accessible    randomised    security    guarantees    np    automatically    leveraging    easily    fill    verification    infancy    inference    robots    mixture    frappant    answered    modeling    learning    relatively    networks    encroaching    formally    solving    equivalence    observations    exact    question    thing    context    one    formal    elementary    size    programming    bugs    bayesian    autonomous    invariant    models    data    correctness    world    intelligence    loop    statistical    ai    cars    grasp    weakest    recipes    precision    checkable    self    model    probabilistic    small    barren    steer    driving    programs    questions    static    deductive    robustness    right    notoriously    halting    spearhead    tackled    repair    synthesis    programmer    ubiquitous    probability    mechanisms    machine    science    graphical    infer    hard    techniques    predictable    precondition    verifiable    alone    landscape    computer    uncertain    halt    undecidable    naturally    algorithms    checking    reasoning    pivotal   

Project "FRAPPANT" data sheet

The following table provides information about the project.

Coordinator
RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN 

Organization address
address: TEMPLERGRABEN 55
city: AACHEN
postcode: 52062
website: www.rwth-aachen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙491˙250 €
 EC max contribution 2˙491˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN DE (AACHEN) coordinator 2˙491˙250.00

Map

 Project objective

Probabilistic programs describe recipes on how to infer statistical conclusions about data from a complex mixture of uncertain data and real-world observations. They can represent probabilistic graphical models far beyond the capabilities of Bayesian networks and are expected to have a major impact on machine intelligence.

Probabilistic programs are ubiquitous. They steer autonomous robots and self-driving cars, are key to describe security mechanisms, naturally code up randomised algorithms for solving NP-hard problems, and are rapidly encroaching AI. Probabilistic programming aims to make probabilistic modeling and machine learning accessible to the programmer.

Probabilistic programs, though typically relatively small in size, are hard to grasp, let alone automatically checkable. Are they doing the right thing? What’s their precision? These questions are notoriously hard — even the most elementary question “does a program halt with probability one?” is “more undecidable” than the halting problem — and can (if at all) be answered with statistical evidence only. Bugs thus easily occur. Hard guarantees are called for. The objective of this project is to enable predictable probabilistic programming. We do so by developing formal verification techniques.

Whereas program correctness is pivotal in computer science, the formal verification of probabilistic programs is in its infancy. The project aims to fill this barren landscape by developing program analysis techniques, leveraging model checking, deductive verification, and static analysis. Challenging problems such as checking program equivalence, loop-invariant and parameter synthesis, program repair, program robustness and exact inference using weakest precondition reasoning will be tackled. The techniques will be evaluated in the context of probabilistic graphical models, randomised algorithms, and autonomous robots.

FRAPPANT will spearhead formally verifiable probabilistic programming.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FRAPPANT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FRAPPANT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

PonD (2019)

Particles-on-Demand for Multiscale Fluid Dynamics

Read More