Opendata, web and dolomites

AmygdalaNeuroMod SIGNED

Unraveling the combinatorial logic of amygdala neuromodulation in decision-making and learning.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AmygdalaNeuroMod project word cloud

Explore the words cloud of the AmygdalaNeuroMod project. It provides you a very rough idea of what is the project "AmygdalaNeuroMod" about.

reward    anxiety    disorders    sub    independent    expand    types    cell    neuromodulators    interplay    neurotechnologies    proper    regulates    elucidating    context    region    circuitry    host    keys    ranging    neuromodulator    expertise    learning    career    salience    group    tools    guided    dopamine    mice    basic    simultaneously    manipulate    modern    mental    holds    genetic    released    functional    alterations    plays    fellowship    almost    serotonin    function    laboratory    fundamentally    balance    neuronal    circuit    amygdala    decision    interactions    depression    brain    foundations    threat    norepinephrine    network    disorder    behavioral    behaving    surprisingly    neuromodulatory    treating    acetylcholine    synaptic    circuits    me    combine    logic    mood    physiological    neuromodulation    inputs    record    opportunity    stimuli    neurotransmitters    leader    europeans    critical    imbalance    emotional    depends    innervated    core    little    electrophysiology    regions   

Project "AmygdalaNeuroMod" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION 

Organization address
address: MAULBEERSTRASSE 66
city: BASEL
postcode: 4058
website: www.fmi.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION CH (BASEL) coordinator 191˙149.00

Map

 Project objective

Proper neuronal circuit function depends fundamentally on the balance of neuromodulators, a set of neurotransmitters released widely throughout the brain. Almost every mental disorder, including anxiety and depression, that affect one out of four Europeans, are associated with a neuromodulatory imbalance in specific sub-circuits. Elucidating the role of different neuromodulatory inputs to specific brain regions holds the keys to understanding and treating mood disorders.

The amygdala plays an essential role in the processing of emotional stimuli and salience, ranging from reward to threat and synaptic alterations in this region are critical for learning and emotional processing. Amygdala is innervated by every major neuromodulator, yet surprisingly little is known about the activity of these inputs under physiological conditions and how neuromodulation regulates amygdala circuit activity during different behavioral states and learning.

Here, I propose to study the functional role of neuromodulatory inputs to the amygdala circuitry during learning and decision-making. Towards this goal, I will combine my experience in large-scale electrophysiology with the expertise of the host laboratory in modern genetic tools and neurotechnologies to simultaneously record and manipulate the activity of dopamine, serotonin, norepinephrine and acetylcholine inputs to the amygdala during context-guided decision-making in behaving mice. Using this approach, I aim to characterize the logic of interactions between neuromodulators and its implementation at the level of defined circuits and cell types in the amygdala and to demonstrate the role of this coordination in defining network activity, behavioral state and learning.

The fellowship will contribute to our basic understanding of the interplay between two core brain systems, while it will provide me with a unique opportunity to expand my expertise and establish the foundations of my future career as an independent group leader.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AMYGDALANEUROMOD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AMYGDALANEUROMOD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More