Opendata, web and dolomites

3D NKCC1 SIGNED

Interdisciplinary approach to characterize the structure and the ion transport mechanism of NKCC1, a key target for brain disorders.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 3D NKCC1 project word cloud

Explore the words cloud of the 3D NKCC1 project. It provides you a very rough idea of what is the project "3D NKCC1" about.

effect    transmission    disorders    importer    acts    diuretic    mainly    function    urgently    treatments    leader    kcc2    animal    inhibitory    expertise    crucially    ratio    transportation    accelerate    structural    led    relationships    characterization    unprecedented    fellow    permeable    symptoms    critically    indicates    ion    electron    varying    neurodevelopmental    brain    models    microscopy    independent    millions    rescues    ultimately    transporters    exporter    group    bumetanide    relationship    selective    broad    silico    drugs    biology    cryo    treatment    molecular    integrate    caused    transporter    effort    inhibitors    compliance    coupled    crystallography    body    structure    fda    grow    kidney    intracellular    concentration    worldwide    clinical    inhibition    thorough    little    chronic    skills    fellowship    poses    defective    cl    scientific    literature    modulate    nkcc1    vitro    physiological    discovery    receptors    resolve    gabaa    approved    ways    drug    gabaergic    ray    nkcc2    insights    solved    pharmaceutical    children    gabaaergic    treat    functional    serious   

Project "3D NKCC1" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 168˙369 €
 EC max contribution 168˙369 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 168˙369.00
2    BAYLOR COLLEGE OF MEDICINE US (HOUSTON TX) partner 0.00

Map

 Project objective

Neurodevelopmental disorders affect millions of children in Europe and worldwide. A large body of literature indicates that inhibitory GABAergic transmission thorough Cl-permeable GABAA receptors is defective in many of these disorders. However, effective pharmaceutical treatments are still needed. There is increasing scientific evidence that varying the intracellular Cl concentration is one of the more physiological and effective ways to modulate GABAAergic transmission. This concentration is mainly established by the Cl importer NKCC1 and the Cl exporter KCC2. Importantly, the NKCC1/KCC2 ratio is defective in several brain disorders. Moreover, NKCC1 inhibition by the FDA-approved diuretic bumetanide rescues many symptoms in animal models. These findings have already led to clinical studies of bumetanide to treat a broad range of brain disorders. However, this requires chronic treatment, which poses serious issues for drug compliance, given the diuretic effect of bumetanide caused by the inhibition of the kidney-specific Cl transporter NKCC2. Crucially, these issues could be solved by selective NKCC1 inhibitors, which would have no diuretic effect. Yet there is still very little knowledge of the structure-function relationship of NKCC1 in terms of ion transportation and how bumetanide acts on NKCC1. The main goal of this fellowship is to resolve NKCC1’s structure using X-Ray crystallography and/or cryo-electron microscopy. This effort will be coupled to the functional characterization of NKCC1 using in vitro and in silico approaches. The fellow will thus integrate her research skills with key expertise in the structural and molecular biology of ion transporters, allowing her to grow into an independent group leader. Ultimately, this project will provide unprecedented insights into the structure-function relationships of NKCC1 in terms of ion transportation. This will critically accelerate the discovery of new and urgently needed drugs for brain disorders.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3D NKCC1" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3D NKCC1" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

ICARUS (2020)

Information Content of locAlisation: fRom classical to qUantum Systems

Read More  

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More