Opendata, web and dolomites

GenDels SIGNED

Development of a new CRISPR-Cas3-based tool for large genomic deletions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "GenDels" data sheet

The following table provides information about the project.

Coordinator
EUROPEAN MOLECULAR BIOLOGY LABORATORY 

Organization address
address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117
website: http://www.embl.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 264˙669 €
 EC max contribution 264˙669 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2022-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EUROPEAN MOLECULAR BIOLOGY LABORATORY DE (HEIDELBERG) coordinator 264˙669.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

The advent of the revolutionary genome editing technique CRISPR-Cas9 has enabled targeted gene mutation, repression, and activation, facilitating impactful biological findings. However, Cas9 as an unbiased DNA deletion tool is limited in its ability to interrogate large regions of DNA of unknown function, because it predominantly generates very small (<20 bp) insertions and deletions at its target site. The capacity to rapidly and efficiently generate large genomic deletions does not currently exist and would be an extremely useful tool for research, allowing for rapid strain engineering of bacterial cells for synthetic biological and metabolic engineering purposes. Additionally, this technology would allow for the interrogation of large segments of non-coding DNA in human cells, much of which has unknown function, but whose variants are often associated with human disease. In this proposal, I aim to develop a Type I-C CRISPR-Cas system employing the Cas3 enzyme (completely distinct from Cas9), which naturally possess coupled nuclease and helicase activity, for high-throughput gene-editing purposes in various prokaryotic, as well as human cells. My preliminary results have shown that this is a credible approach, as I have been able to generate individually, as well as in combination, multiple deletions in bacterial organisms exceeding 60 kb in size. A focal point of the proposal is to adapt this system for use in human cells, which would provide a novel basic research tool with unprecedented capabilities and also could be utilized in human health-related applications. The proposal aims to address this later possibility by utilizing the developed system to treat human cell lines infected with difficult-to-treat pathogenic viruses.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GENDELS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GENDELS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SingleCellAI (2019)

Deep-learning models of CRISPR-engineered cells define a rulebook of cellular transdifferentiation

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More