Opendata, web and dolomites

ESCAPE SIGNED

Abandoning ship – sex and dormancy strategies in Daphnia

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ESCAPE" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF SHEFFIELD 

Organization address
address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN
website: www.shef.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) coordinator 212˙933.00

Map

 Project objective

The ability to switch between sexual and asexual reproduction may be critical for many taxa when securing survival in varying environmental conditions. For these organisms, sex is often associated with harsh conditions, typically found at the end of the growing season. Sexual recombination in facultative sexuals commonly results in the formation of a dormant form that is considered a strategy to overcome adverse environmental conditions. When engaging in sex, organisms have been shown to specialize by producing males or sexual females, but not necessarily both, potentially reducing the chance of inbreeding. Sexual reproduction among those ‘gender specialists’ may vary with contrasting environments. The association between different environments and the production of a distinct phenotype (i.e., males or sexual females) suggests that sex specialisation may be adaptive. However, little is known about whether sex specialization is associated more with inbreeding avoidance or local adaptation. In the work proposed here, we will use the ecological and genomic model organism Daphnia to experimentally test if genetic variation in the production of males and ephippia is strongly environment dependent or not. Specifically, we will use a high-throughput phenotyping approach to assess genotype x environment interaction among 100 Daphnia pulex genotypes originating from a UK meta-population. We will also assess the molecular mechanisms that drive the production of males and ephippia. Using a gene expression approach, we aim to resolve the network of gene expressions that underpins the shift from diploid egg production to male and ephippia production. Obtained data will help to resolve whether inbreeding avoidance or local adaptation/dormancy underpins sexual specialisation. Findings from this work will advance our understanding of why and how facultative sexual reproduction is maintained in populations. Our conclusions will be relevant to evolutionary ecology and beyond.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ESCAPE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ESCAPE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SingleCellAI (2019)

Deep-learning models of CRISPR-engineered cells define a rulebook of cellular transdifferentiation

Read More  

LOBSTER (2019)

Development of Photochemical Strategies for the Generation and Use of Sulfur Radicals in the Assembly of C-S Bonds

Read More  

ActinSensor (2019)

Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila

Read More