Opendata, web and dolomites

DecodeDegRNA SIGNED

Post-transcriptional regulation of RNA degradation in early zebrafish development

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DecodeDegRNA project word cloud

Explore the words cloud of the DecodeDegRNA project. It provides you a very rough idea of what is the project "DecodeDegRNA" about.

contexts    decipher    transcription    arising    disease    vast    limited    predict    uncover    relies    carefully    final    cells    decode    principles    regulation    model    sequences    embryos    determines    massive    regulatory    underlie    expression    applicable    efforts    anecdotal    degradation    molecular    code    lack    genes    maternal    mechanisms    broadly    ranging    reveal    vivo    functions    birth    diverse    technologies    transition    event    biological    interactions    place    time    strive    rna    living    resolution    protein    implications    functional    heart    assays    limit    cell    death    understand    genomic    engineering    elicit    populations    physiological    difficulties    roles    right    systematic    predictive    experimental    basic    fundamental    mrnas    gene    inside    molecule    native    environmental    transcriptional    animals    models    ideal    zebrafish    embryonic    expressed    first    silencing    small    developmental    globally    single    largely    types    investigation    lies    stimuli    embryo   

Project "DecodeDegRNA" data sheet

The following table provides information about the project.

Coordinator
THE HEBREW UNIVERSITY OF JERUSALEM 

Organization address
address: EDMOND J SAFRA CAMPUS GIVAT RAM
city: JERUSALEM
postcode: 91904
website: www.huji.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2025-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM IL (JERUSALEM) coordinator 1˙500˙000.00

Map

 Project objective

Regulation of gene expression lies at the heart of fundamental biological processes, such as the formation of different cell types inside an embryo or responses to environmental stimuli. Living cells ensure that the right genes are expressed at the right time and place by carefully controlling every RNA molecule inside a cell from its ‘birth’ by transcription to its final ‘death’ by degradation. While vast efforts strive to understand the first part of this process – transcription, studies of RNA degradation have been more limited. Current knowledge largely relies on small-scale investigation of key – but anecdotal – cases, while technical and experimental difficulties limit its large-scale analysis. Therefore, we still lack a systematic and predictive understanding of RNA degradation: technologies to globally measure it, the molecular mechanisms involved, its functional and physiological implications and models to decode and predict it. Transcriptional silencing makes early embryos an ideal system to study RNA degradation and uncover its basic concepts, as I propose here. Aim 1 will decipher how genomic information within native RNA sequences determines their degradation in embryos. Aim 2 will develop the technology to investigate RNA degradation at single-cell resolution, and uncover its regulation within arising embryonic cell populations. Aim 3 will reveal the molecular implementation of the regulatory code of RNA degradation and determine its physiological roles that underlie the massive degradation of maternal mRNAs – a key regulatory event and a main developmental transition in early embryos of all animals. This work will uncover new principles of RNA degradation in early development and elicit its mechanisms and functions using the zebrafish as an in vivo model system. The assays and models to be developed will be broadly applicable to study RNA degradation in diverse contexts, ranging from disease mechanisms to engineering of RNA- protein interactions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DECODEDEGRNA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DECODEDEGRNA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

EffectiveTG (2018)

Effective Methods in Tame Geometry and Applications in Arithmetic and Dynamics

Read More