Opendata, web and dolomites

BioTempSense SIGNED

Understanding the thermodynamic and mechanistic basis of a model biological temperature sensor

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BioTempSense" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 162˙806 €
 EC max contribution 162˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2021
 Duration (year-month-day) from 2021-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 162˙806.00

Map

 Project objective

Despite the existence of engineered thermometers since the time of Galileo, we still do not understand how biological temperature sensors work. Engineered thermometers take advantage of simple laws in which volume or electrical resistance vary linearly with temperature. Do similarly simple laws determine the temperature sensitivity of biological temperature sensors? The major objective of this project is to understand the physical mechanisms of temperature sensing of bacterial sodium channels, a model biological temperature sensor. To understand this mechanism three approaches will be taken: a bioinformatics approach to reveal any information evolution could tell us about the directed evolution of these sensors, a molecular dynamics approach to elucidate the molecular mechanism determining this temperature sensitivity, and finally the development of a coarse-grained computational model to allow transfer of the obtained results to other temperature sensors. A better understanding of biological temperature sensors has broad implications in the understanding of the potential effect of an increase in global temperature on plants and animals as well as in the design of pain therapeutics that target temperature-sensitive protein complexes in the human body. This highly interdisciplinary work is therefore expected to set the stage for improving the general understanding of biological temperature sensing, which, due to its relevance and wide-applicability, will subsequently enable to pursue my career as independent researcher.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOTEMPSENSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOTEMPSENSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

SingleCellAI (2019)

Deep-learning models of CRISPR-engineered cells define a rulebook of cellular transdifferentiation

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More