Opendata, web and dolomites

PLIM-G4 SIGNED

Long-lived optical probes to image G-quadruplex DNA in live cells

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PLIM-G4" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2021
 Duration (year-month-day) from 2021-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 212˙933.00

Map

 Project objective

There has been increasing experimental evidence suggesting that tetra-stranded DNA structures (G-quadruplexes) play important biological roles in telomere function and maintenance, replication and transcription. The most direct evidence for their existence has come from immuno-staining in fixed cells as well as from recent deep sequencing studies. However, to date, we are still lacking tools that allows us to visualizing G-quadruplexes directly in live cells. While several small-molecule probes that fluoresce upon interaction with DNA have been reported, none of them have been successful at imaging G-quadruplexes in a cellular environment. This is mainly due to the fact that they rely on changes in intensity which are not possible to track properly in a cellular environment. Recently, the host lab reported a novel strategy to image G-quadruplexes in live cells. This approach makes use of the changes in emission lifetime (rather than intensity) of optical probes upon their interaction with different topologies of DNA. Since life-time is concentration independent, this approach can be successfully used to image G-quadruplexes in live cells. While this has proven to be a highly successful approach, it is still in its infancy since the probe developed so far has a number of limitations such as low brightness, relatively small lifetime range and low selectivity. Thus, this project aims to develop a new set of probes that address all these issues and use them to image the dynamics of G-quadruplexes in live cells in real time. I propose to develop platinum complexes (which 'switch-on' their phosphorescent upon interactions with DNA) with high affinity and selectivity for G-quadruplexes. To achieve this, novel approaches for automated synthesis and high-throughput analysis will be developed. The new probes will be used to carry out Phosphorescence Lifetime Imaging Microscopy (PLIM) studies to give evidence for the first time of the dynamics of G-quadruplexes in live cells.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLIM-G4" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLIM-G4" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

SingleCellAI (2019)

Deep-learning models of CRISPR-engineered cells define a rulebook of cellular transdifferentiation

Read More