Opendata, web and dolomites

Evolutionary Neurogenomics

The impact of recent retrotransposon invasions on the evolution of human neural gene expression

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Evolutionary Neurogenomics project word cloud

Explore the words cloud of the Evolutionary Neurogenomics project. It provides you a very rough idea of what is the project "Evolutionary Neurogenomics" about.

dutch    individual    novelties    group    invasions    patterns    insertions    waves    disease    dna    expression    silenced    restricted    cancer    throughout    genomes    evolutionary    me    gene    sk    stem    classes    methylation    goals    zinc    neuronal    sensitive    regulatory    activated    proteins    finger    human    kznf    cell    marie    intimately    health    krab    recruitment    reactivated    disorders    correlated    diseases    exploration    extra    showed    professional    aberrantly    training    retrotransposon    opportunity    validate    attack    genes    mobile    hold    re    fellowship    genomic    cortical    astonishing    neural    types    50    previously    curie    retrotransposons    neurological    genome    clues    networks    functionally    mechanism    primate    neuron    odowska    differentiation    opens    retrovirus    neurodevelopmental    modules    evolution    suggesting    locations    integrate    unknown    suggest    assay    thousands    source   

Project "Evolutionary Neurogenomics" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT VAN AMSTERDAM 

Organization address
address: SPUI 21
city: AMSTERDAM
postcode: 1012WX
website: www.uva.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website http://www.frankjacobslab.com
 Total cost 177˙598 €
 EC max contribution 177˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2017-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT VAN AMSTERDAM NL (AMSTERDAM) coordinator 177˙598.00

Map

 Project objective

Throughout evolution, primate genomes have been under attack by different classes of retrotransposons, retrovirus-derived mobile DNA elements. As a result, an astonishing ~50% of the human genome is derived from many types of retrotransposons. I previously showed that primate-specific retrotransposon invasions are restricted by primate-specific KRAB zinc finger proteins. These findings suggest that through recruitment to thousands of new genomic locations, KRAB zinc finger proteins have become intimately integrated into pre-existing gene regulatory pathways. Retrotransposons are an important source for evolutionary novelties, but the impact of thousands of human-specific retrotransposon-KZNF regulatory modules on the evolution of human gene expression patterns is unknown. There is increasing evidence that retrotransposons become reactivated during neural differentiation, suggesting that neuronal gene-regulatory networks may be extra sensitive to retrotransposon insertions. Furthermore, new retrotransposon insertions may hold clues to the mechanism of human disease: Even when retrotransposons are efficiently silenced in health, they may become aberrantly activated by changes in DNA methylation observed in neurological diseases and cancer. Using a previously established human and non-human primate stem cell cortical neuron differentiation assay, I will identify, validate and functionally test neurodevelopmental genes that have come under the control of retrotransposons. This will address the impact of recent waves of retrotransposon insertions on the evolution of human neural gene expression patterns and opens up the exploration of how new retrotransposon insertions may be correlated to human neurological disorders. The Marie Skłodowska-Curie individual fellowship will provide the opportunity to establish my research group in Europe and re-integrate in Dutch and EU networks, as well as allow me to achieve my professional development training goals.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EVOLUTIONARY NEUROGENOMICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EVOLUTIONARY NEUROGENOMICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

StressOME (2019)

Defining and modulating the stress granule proteome as a therapeutic strategy in Amyotrophic Lateral Sclerosis

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More  

ItalianWoolf (2019)

Virginia Woolf and Italian Readers

Read More