Opendata, web and dolomites

MEMDYN TERMINATED

Linking the intrinsic protein dynamics to function in glutamate transporters

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MEMDYN" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 246˙668 €
 EC max contribution 246˙668 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-GF
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2019-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 246˙668.00
2    Weill Cornell Medical College US (ITHACA NY) partner 0.00

Map

 Project objective

The alternating access model of how membrane-embedded transport proteins translocate substrates across biological membranes has been proposed since the 1960s: membrane transporters bind substrates on one side of the membrane and release them on the other side upon conformational rearrangements in the protein. This has been experimentally confirmed by high-resolution structures of membrane transporters in different conformations and is exemplified by the conformational change in the archaeal glutamate transporter homologue GltPh from Pyrococcus horikoshii. GltPh is a trimer in which each protomer functions independently of the others. Outward and inward facing conformations suggest transport by alternating access to either side of the membrane whereby a distinct transport domain undergoes large rotational and translational movements relative to the static trimerisation domain. It is unknown how GltPh achieves this conformational rearrangement, which occurs both in the absence and presence of substrates. We propose to integrate cutting-edge techniques in membrane structural biology to identify dynamic hotspots that drive the large conformational transitions in GltPh. We will combine insights from protein crystallography with local variations of thermodynamic stability and protein dynamics measured by hydrogen/deuterium exchange to map the structural components that allow conformational change to occur. In doing so, we will obtain new insights into how GltPh functions, shedding light on the mechanism of biomedically important glutamate transporters. We will use this model system to develop strategies that allow understanding of the molecular basis of substrate transport. The methods developed would be widely applicable to other membrane transport proteins.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MEMDYN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MEMDYN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MITafterVIT (2020)

Unravelling maintenance mechanisms of immune tolerance after termination of venom immunotherapy by means of clonal mast cell diseases

Read More  

SRIMEM (2018)

Super-Resolution Imaging and Mapping of Epigenetic Modifications

Read More  

VDGSEGUR (2019)

Gender Violence and Security in the Interoceanic Industrial Corridor of the Isthmus of Tehuantepec: A Critical Examination of Policies and Practices

Read More