Opendata, web and dolomites

Sulphirulence

Re-engineering of fungal sulphur metabolism to limit mould viability and virulence.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Sulphirulence project word cloud

Explore the words cloud of the Sulphirulence project. It provides you a very rough idea of what is the project "Sulphirulence" about.

lungs    gaseous    mice    mutants    transgenic    sulphur    wish    world    sulfhydration    viability    view    mutational    candidate    million    eukaryotic    oxidized    intact    homocysteine    correlates    infection    blockade    clinical    synthase    cysteine    function    host    fungal    respectively    deficient    synthesis    molecular    fungus    proteins    expertise    exploited    genome    sources    appears    antifungal    molecule    annum    decipher    mammalian    occurrence    eliminated    leaving    vivo    disease    therapies    enforce    requirement    assimilation    precursor    essentiality    h2s    experimental    snps    mould    enzyme    exploitable    secondary    discovered    designing    pathogen    methionine    virulence    pathogenicity    transcriptome    responsible    gt    cells    class    sole    regulation    illnesses    seek    source    human    containing    inorganic    aspergillus    scientific    fumigatus    harness    sequences    precise    signalling    biosynthesis    scrutinizing    foremost   

Project "Sulphirulence" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2018-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 183˙454.00

Map

 Project objective

Aspergillus fumigatus, the major mould pathogen of human lungs, is responsible for > 2 million illnesses per annum in Europe . I have discovered that sulphur is an essential host-derived element during A. fumigatus infection . This finding is novel, and highly exploitable as a) Synthesis of the sulphur-containing molecule methionine appears to be essential for viability of A. fumigatus b) Regulation of sulphur assimilation is essential for A. fumigatus virulence and c) The foremost candidate sulphur source in mammalian lungs (H2S) is gaseous, and recently identified as a novel signalling molecule in eukaryotic cells . I now wish to harness world-class clinical and scientific expertise in the field of fungal pathogenicity to identify the precise molecular source of sulphur exploited by A. fumigatus during experimental and clinical infection, with a view to designing novel antifungal therapies. OBJECTIVES 1. To define the role of methionine synthase in A. fumigatus viability I will enforce a mutational blockade upon biosynthesis of the sole methionine precursor, homocysteine, while leaving methionine synthase intact. This will decipher between essentiality of methionine biosynthesis, and essentiality of a secondary function of the methionine synthase enzyme. 2. I have eliminated cysteine and oxidized inorganic-S sources as in-host sources of sulphur. I will now address, via mutational analysis in the fungus, in-host transcriptome and transgenic mice whether methionine or H2S are exploited in the host. Having defined the S-source exploited in vivo, I will seek correlates with human disease by scrutinizing human and fungal genome sequences for SNPs associated, respectively, with human H2S production and fungal sulphur assimilation. 3. I will use A. fumigatus mutants deficient in production and assimilation of H2S to address the occurrence of, and requirement for, sulfhydration of fungal proteins during mammalian infection.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SULPHIRULENCE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SULPHIRULENCE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

CP-FTmmW Aminogen (2020)

Chemistry and structure of aminogen radicals using chirped-pulse Fourier transform (sub)millimeter rotational spectroscopy

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More