Opendata, web and dolomites

BIO-ORIGAMI SIGNED

Meta-biomaterials: 3D printing meets Origami

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BIO-ORIGAMI project word cloud

Explore the words cloud of the BIO-ORIGAMI project. It provides you a very rough idea of what is the project "BIO-ORIGAMI" about.

subjected    materials    few    loads    rare    diffusivity    instability    japanese    combination    combining    dimension    structures    curvatures    folding    rate    flat    decorate    nanometers    owing    preferable    patterns    geometrical    manufactured    cell    halfway    mechanical    unprecedented    animal    class    sheet    creates    direct    ancient    cells    printed    assays    printing    precisely    models    groundbreaking    permeability    surfaces    nature    stem    tissue    meta    decorated    bone    unusual    negative    knows    mass    distributions    oxygen    self    extra    adding    stiffness    shapes    compression    transport    fold    culture    nano    optimize    joints    vitro    added    surface    behavior    gives    introduces    create    deadlock    crease    3d    sheets    origami    nanolithography    paper    differentiation    nutrients    biomaterials    techniques    desired    material    structure    regeneration    designed    extraordinary    solving    biological    first    communicate    thickness   

Project "BIO-ORIGAMI" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT DELFT 

Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN
website: www.tudelft.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙499˙600 €
 EC max contribution 1˙499˙600 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 1˙499˙600.00

Map

 Project objective

Meta-materials, best known for their extraordinary properties (e.g. negative stiffness), are halfway from both materials and structures: their unusual properties are direct results of their complex 3D structures. This project introduces a new class of meta-materials called meta-biomaterials. Meta-biomaterials go beyond meta-materials by adding an extra dimension to the complex 3D structure, i.e. complex and precisely controlled surface nano-patterns. The 3D structure gives rise to unprecedented or rare combination of mechanical (e.g. stiffness), mass transport (e.g. permeability, diffusivity), and biological (e.g. tissue regeneration rate) properties. Those properties optimize the distribution of mechanical loads and the transport of nutrients and oxygen while providing geometrical shapes preferable for tissue regeneration (e.g. higher curvatures). Surface nano-patterns communicate with (stem) cells, control their differentiation behavior, and enhance tissue regeneration. There is one important problem: meta-biomaterials cannot be manufactured with current technology. 3D printing can create complex shapes while nanolithography creates complex surface nano-patterns down to a few nanometers but only on flat surfaces. There is, however, no way of combining complex shapes with complex surface nano-patterns. The groundbreaking nature of this project is in solving that deadlock using the Origami concept (the ancient Japanese art of paper folding). In this approach, I first decorate flat 3D-printed sheets with nano-patterns. Then, I apply Origami techniques to fold the decorated flat sheet and create complex 3D shapes. The sheet knows how to self-fold to the desired structure when subjected to compression, owing to pre-designed joints, crease patterns, and thickness/material distributions that control its mechanical instability. I will demonstrate the added value of meta-biomaterials in improving bone tissue regeneration using in vitro cell culture assays and animal models

 Publications

year authors and title journal last update
List of publications.
2017 Teunis van Manen, Shahram Janbaz, Amir A. Zadpoor
Programming 2D/3D shape-shifting with hobbyist 3D printers
published pages: , ISSN: 2051-6347, DOI: 10.1039/C7MH00269F
Mater. Horiz. 2019-07-08
2018 Sebastien J.P. Callens, Amir A. Zadpoor
From flat sheets to curved geometries: Origami and kirigami approaches
published pages: 241-264, ISSN: 1369-7021, DOI: 10.1016/j.mattod.2017.10.004
Materials Today 21/3 2019-04-01
2018 Teunis van Manen, Shahram Janbaz, Amir A. Zadpoor
Programming the shape-shifting of flat soft matter
published pages: 144-163, ISSN: 1369-7021, DOI: 10.1016/j.mattod.2017.08.026
Materials Today 21/2 2019-04-01
2017 Shahram Janbaz, Niels Noordzij, Dwisetya S. Widyaratih, Cornelis W. Hagen, Lidy E. Fratila-Apachitei, Amir A. Zadpoor
Origami lattices with free-form surface ornaments
published pages: eaao1595, ISSN: 2375-2548, DOI: 10.1126/sciadv.aao1595
Science Advances 3/11 2019-04-01

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIO-ORIGAMI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIO-ORIGAMI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

QLite (2019)

Quantum Light Enterprise

Read More