Opendata, web and dolomites

ENVERESP SIGNED

Crosstalk between nuclear envelope and DNA Damage Response: Role of nucleoporin TPR in the maintenance of genomic integrity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ENVERESP project word cloud

Explore the words cloud of the ENVERESP project. It provides you a very rough idea of what is the project "ENVERESP" about.

imaging    their    dna    found    damage    ddr    prevents    oncogenesis    genome    principles    mutagenesis    kinase    intracranial    replication    optimize    fused    amplification    previously    pore    mutation    solid    pediatric    silac    networks    threats    breast    significantly    microscopy    responsive    promoter    met    oncogenes    kinases    progression    envelope    nuclear    receives    liver    counteract    leads    ependymomas9    types    damaged    mechanism    genesis    survival    vitro    technologies    proteomic    condensation    genetics    signal    shorter    atr    phosphorylated    serves    checkpoint    raf    tumors    repair    expression    genomics    employing    region    signaling    body    maintenance    domains    each    translocated    extensive    domain    electron    stability    nucleoporin    ing    proto    linked    proteomics    biological    cells    thousands    cell    deregulated    critical    terminal    profiling    cancer8    tpr    proteins    treatments    atm    mechanistic    network    protein    interestingly    detect    patients    day    molecular    barrier    chromatin    tumor    posed    lesions    development2    therapies    human    binding    genes    cancer   

Project "ENVERESP" data sheet

The following table provides information about the project.

Coordinator
IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE 

Organization address
address: VIA ADAMELLO 16
city: MILANO
postcode: 20139
website: www.ifom-firc.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 168˙277 €
 EC max contribution 168˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE IT (MILANO) coordinator 168˙277.00

Map

 Project objective

Each cell in the human body receives thousands of DNA lesions per day. To counteract threats posed by DNA damage, cells have evolved an integrated signaling network called the DNA-damage response (DDR). This mechanism allows cells to detect DNA lesions, signal their presence and promote their repair. Mutation of DDR genes, which serves as a biological barrier against tumor progression, leads to cancer development2. A large-scale proteomic analysis of proteins phosphorylated in response to DNA damage by checkpoint kinases ATM and ATR identified extensive protein networks responsive to DNA damage. Interestingly, among the proteins identified to be phosphorylated upon DNA damage were several nuclear pore complex factors including nucleoporin Translocated Promoter Region (TPR)5. TPR was previously linked to cancer since its N-terminal domain has been found fused with the protein kinase domains of various proto-oncogenes such as RAF and MET resulting in human solid tumors. TPR expression level was found deregulated in many types of human tumors such as breast and liver cancer8. Amplification of TPR was also significantly associated with a shorter survival of patients with pediatric intracranial ependymomas9. All these findings support a critical role for TPR in the mechanism of oncogenesis. By employing state-of-the-art proteomics (SILAC), genetics (in vitro mutagenesis), genomics (DNA binding profiling) and imaging (electron microscopy) technologies we will investigate how TPR prevents tumor genesis via its role in the DDR network coordinating DNA repair, DNA replication and chromatin condensation with the nuclear envelope upon DNA damage. Providing mechanistic insight into the role of TPR in DDR and the maintenance of genome stability will not only contribute to our understanding of molecular principles of response to damaged DNA, but will allow us to optimize existing cancer treatments and design new molecular targeted therapies in the future.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ENVERESP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ENVERESP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LEVERAGE mRNA (2019)

Laboratory Evolution of Virus-likE pRotein cAGes for Eukaryotic mRNA delivery

Read More  

signalling dynamics (2020)

Bridging biophysics and cell biology: The role of G protein-coupled receptor conformations in signalling

Read More  

DNANanoProbes (2019)

Design of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.

Read More