Opendata, web and dolomites

DrEAM SIGNED

Directed Evolution of Artificial Metalloenzymes for In Vivo Applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DrEAM project word cloud

Explore the words cloud of the DrEAM project. It provides you a very rough idea of what is the project "DrEAM" about.

natural    prephenate    catalytic    combining    valine    outer    efficient    performance    rely    incorporation    catalysts    biotin    alternative    allylic    escherichia    metathesis    components    vivo    knock    protein    phenylalanine    tyrosine    metalloenzymes    spirit    boost    strain    ams    producing    attractive    reaction    subprojects    stringent    complement    emerged    darwinian    enzymes    containing    am    survive    membrane    nature    optimize    substitution    pressure    tryptophan    precursors    hybrid    metabolic    engineered    biological    oligonucleotide    keto    localizing    coli    artificial    anticipate    deliverable    deleterious    macromolecule    reactions    genetically    precursor    enone    metal    indole    cofactor    aminoacid    selectable    mixtures    periplasm    efforts    unprecedented    outline    dream    cascades    evolution    catalytically    streptavidin    performing    naturally    decade    abiotic    vital    auxotrophs    evolve    combine    strategies    screening    evolvable    organometallic    relying    engineer    herein    homogeneous    possibility   

Project "DrEAM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT BASEL 

Organization address
address: PETERSPLATZ 1
city: BASEL
postcode: 4051
website: www.unibas.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website https://ward.chemie.unibas.ch/en/research/
 Total cost 2˙490˙700 €
 EC max contribution 2˙490˙700 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT BASEL CH (BASEL) coordinator 2˙490˙700.00

Map

 Project objective

In the past decade, artificial metalloenzymes (AMs) have emerged as an attractive alternative to the more traditional enzymes and homogeneous catalysts. Such hybrid catalysts result from the incorporation of an abiotic metal cofactor within a macromolecule (protein or oligonucleotide). Artificial metalloenzymes combine attractive features of both homogeneous catalysts and enzymes, including the possibility to genetically optimize the catalytic performance of new-to-nature organometallic reactions. Can artificial metalloenzymes become as catalytically efficient as naturally-evolved metalloenzymes, even in complex biological mixtures? Herein, we outline our efforts to address this challenge by localizing and evolving AMs within the periplasm of Escherichia coli. To achieve this objective, we will exploit AMs based on the biotin-streptavidin technology. Four subprojects have been tailored to address the challenges: i) knock-out deleterious components present in the periplasm; ii) improve the cofactor uptake through the outer-membrane; iii) engineer streptavidin to boost the AM’s performance; and iv) rely both on screening and selection strategies to evolve AMs in vivo. Relying on auxotrophs, we will demonstrate the potential of AMs to complement metabolic pathways. Only E. coli auxotrophs containing an evolved AM capable of producing the vital aminoacid-precursor will survive the stringent selection pressure. We have identified several selectable aminoacid precursors which can be produced by metathesis (indole, precursor of tryptophan), enone reduction (keto valine, precursor of valine) and allylic substitution (prephenate, precursor of tyrosine and phenylalanine). In a Darwinian evolution spirit, we anticipate that applying selection pressure will allow to evolve AMs to unprecedented catalytic performance. The main deliverable of the DrEAM is an engineered and evolvable E. coli strain capable of performing in vivo reaction cascades combining AMs and natural enzymes.

 Publications

year authors and title journal last update
List of publications.
2019 Valerio Sabatino, Johannes G. Rebelein, Thomas R. Ward
“Close-to-Release”: Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis
published pages: , ISSN: 0002-7863, DOI: 10.1021/jacs.9b07193
Journal of the American Chemical Society 2019-10-29
2019 Holly J. Davis, Thomas R. Ward
Artificial Metalloenzymes: Challenges and Opportunities
published pages: 1120-1136, ISSN: 2374-7943, DOI: 10.1021/acscentsci.9b00397
ACS Central Science 5/7 2019-10-29
2019 Shuke Wu, Yi Zhou, Johannes G. Rebelein, Miriam Kuhn, Hendrik Mallin, Jingming Zhao, Nico V. Igareta, Thomas R. Ward
Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes
published pages: 15869-15878, ISSN: 0002-7863, DOI: 10.1021/jacs.9b06923
Journal of the American Chemical Society 141/40 2019-10-29
2018 Martina Hestericová, Tillman Heinisch, Lur Alonso-Cotchico, Jean-Didier Maréchal, Pietro Vidossich, Thomas R. Ward
Directed Evolution of an Artificial Imine Reductase
published pages: 1863-1868, ISSN: 1433-7851, DOI: 10.1002/anie.201711016
Angewandte Chemie International Edition 57/7 2019-06-13
2018 Yasunori Okamoto, Ryosuke Kojima, Fabian Schwizer, Eline Bartolami, Tillmann Heinisch, Stefan Matile, Martin Fussenegger, Thomas R. Ward
A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-04440-0
Nature Communications 9/1 2019-06-13
2017 Sascha G. Keller, Andrea Pannwitz, Hendrik Mallin, Oliver S. Wenger, Thomas R. Ward
Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation
published pages: 18019-18024, ISSN: 0947-6539, DOI: 10.1002/chem.201703885
Chemistry - A European Journal 23/71 2019-06-13
2018 Sascha G. Keller, Benjamin Probst, Tillmann Heinisch, Roger Alberto, Thomas R. Ward
Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology
published pages: e1800036, ISSN: 0018-019X, DOI: 10.1002/hlca.201800036
Helvetica Chimica Acta 101/4 2019-06-13
2018 Hendrik Mallin, Thomas R. Ward
Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades
published pages: , ISSN: 1867-3880, DOI: 10.1002/cctc.201800162
ChemCatChem 2019-06-13
2018 Johannes G Rebelein, Thomas R Ward
In vivo catalyzed new-to-nature reactions
published pages: 106-114, ISSN: 0958-1669, DOI: 10.1016/j.copbio.2017.12.008
Current Opinion in Biotechnology 53 2019-06-13
2018 Jingming Zhao, Daniel G. Bachmann, Markus Lenz, Dennis G. Gillingham, Thomas R. Ward
An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin
published pages: 2294-2298, ISSN: 2044-4753, DOI: 10.1039/C8CY00646F
Catalysis Science & Technology 8/9 2019-06-13
2017 Yasunori Okamoto, Thomas R. Ward
Cross-Regulation of an Artificial Metalloenzyme
published pages: 10156-10160, ISSN: 1433-7851, DOI: 10.1002/anie.201702181
Angewandte Chemie International Edition 56/34 2019-06-13
2018 Martina Hestericová, Tillmann Heinisch, Markus Lenz, Thomas R. Ward
Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase
published pages: 10837-10841, ISSN: 1477-9226, DOI: 10.1039/c8dt02224k
Dalton Transactions 47/32 2019-06-06
2018 Tillmann Heinisch, Fabian Schwizer, Brett Garabedian, Eszter Csibra, Markus Jeschek, Jaicy Vallapurackal, Vitor B. Pinheiro, Philippe Marlière, Sven Panke, Thomas R. Ward
E. coli surface display of streptavidin for directed evolution of an allylic deallylase
published pages: 5383-5388, ISSN: 2041-6520, DOI: 10.1039/c8sc00484f
Chemical Science 9/24 2019-06-06
2019 Johannes G. Rebelein, Yoann Cotelle, Brett Garabedian, Thomas R. Ward
Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein
published pages: 4173-4178, ISSN: 2155-5435, DOI: 10.1021/acscatal.9b01006
ACS Catalysis 2019-06-06
2018 Jingming Zhao, Johannes G. Rebelein, Hendrik Mallin, Christian Trindler, Michela M. Pellizzoni, Thomas R. Ward
Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’ s Periplasm
published pages: 13171-13175, ISSN: 0002-7863, DOI: 10.1021/jacs.8b07189
Journal of the American Chemical Society 140/41 2019-06-06
2019 Alexandria Deliz Liang, Joan Serrano-Plana, Ryan L. Peterson, Thomas R. Ward
Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution
published pages: 585-595, ISSN: 0001-4842, DOI: 10.1021/acs.accounts.8b00618
Accounts of Chemical Research 52/3 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DREAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DREAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

SUBMODULAR (2019)

The Power of Randomness and Continuity in Submodular Optimization

Read More  

CARBOFLOW (2020)

Streamlined carbon dioxide conversion in ionic liquids – a platform strategy for modern carbonylation chemistry

Read More