Opendata, web and dolomites

BioREAD

BioREAD; a Continuous Barrier Quality Monitoring System for Organs-on-Chip

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BioREAD" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT TWENTE 

Organization address
address: DRIENERLOLAAN 5
city: ENSCHEDE
postcode: 7522 NB
website: www.utwente.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-PoC
 Funding Scheme ERC-POC
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2018-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT TWENTE NL (ENSCHEDE) coordinator 150˙000.00

Map

 Project objective

Organs-on-chip are expected to play a crucial role in the pharmaceutical industry for drug development and study of organs and diseases. We propose the development of an electrical detector that enables simple, versatile and continuous quality monitoring of these devices and is essential for commercialization. Combined with recent advances in stem cell technology, Organ-on-Chips can be used to do drug screening on an individual level. Therefore it can serve as instrument for personalized medicine, by determining the effectiveness of selected compounds, as well as possible side-effects to determine safe drug doses on a person-specific level. Moreover, Organs-on-Chip will greatly contribute to a further reduction in the need for animal testing. Besides the pharmaceutical industry, Organs-on-Chip hold great promise for the food and cosmetics industry to test the safety of products.

Organ-on-Chip systems need continuous monitoring of the quality of the cell barrier to guarantee reliable outcomes of the drug development tests. State-of-the-art methods, such as fluorescence and commercially available Trans-Endothelial Electrical Resistance (TEER) measurement apparatus are discontinuous, inaccurate and/or harmful for the cells and therefore unsuitable for pharmaceutical applications. Our innovation overcomes these disadvantages. It enables continuous quality monitoring of the barrier function of the organ, which is essential for the commercialization of Organs-on-Chip. The BIOS-Lab on Chip group holds an excellent record in high-quality TEER measurements, demonstrating direct current (DC) TEER-measurements in a gut-on-a-chip in a top-15 of most cited research papers in the journal Lab-on-Chip in 2015 and has ample experience in the development of a blood-brain barrier on chip. This proposal is part of the ERC-project Vascular Engineering on-chip using differentiated Stem Cells (VESCEL).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOREAD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOREAD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PLANTGROWTH (2019)

Exploiting genome replication to design improved plant growth strategies

Read More  

BABE (2018)

Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants

Read More  

PoreDetect (2020)

Bench-top system for detection and analysis of miRNA using solid-state nanopores

Read More