Opendata, web and dolomites

EcoLipid SIGNED

Ecophysiology of membrane lipid remodelling in marine bacteria

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EcoLipid project word cloud

Explore the words cloud of the EcoLipid project. It provides you a very rough idea of what is the project "EcoLipid" about.

cells    molecular    phosphorus    remodeling    microbial    found    physiology    substitute    lipid    unknown    offers    environments    stress    structural    sar11    occurs    ecophysiology    biotic    roseobacter    functioning    biogeochemical    hypothesize    bacterial    bacteria    containing    lack    players    form    heterotrophs    phosphatidylglycerol    profound    fitness    deficiency    waters    adapt    cycling    free    capacity    demonstrated    sulfur    trade    biology    clades    offs    sulfolipids    betaine    lipids    reveal    physiological    whereby    omics    coli    abundant    glycolipids    organisms    composition    uses    basis    competitive    ornithine    numerically    cycles    significantly    restricting    membrane    nutrient    ecological    oligotrophic    abiotic    cell    advantage    limitation    cosmopolitan    predominantly    myself    marine    stresses    phytoplankton    heterotrophic    envelope    knock    thought    ecologically    synthesis    phospholipids    insights    until    environment    remodelling    phosphatidylethanolamine    escherichia    deal    membranes   

Project "EcoLipid" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF WARWICK 

Organization address
address: Kirby Corner Road - University House
city: COVENTRY
postcode: CV4 8UW
website: www.warwick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://warwick.ac.uk/fac/sci/lifesci/research/ychen/5
 Total cost 1˙965˙113 €
 EC max contribution 1˙965˙113 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 1˙965˙113.00

Map

 Project objective

'Membrane lipids form the structural basis of all cells. In bacteria Escherichia coli uses predominantly phosphorus-containing lipids (phospholipids) in its cell envelope, including phosphatidylethanolamine and phosphatidylglycerol. However, beyond E. coli a range of lipids are found in bacterial membranes, including phospholipids as well as phosphorus (P)-free lipids such as betaine lipids, ornithine lipids, sulfolipids and glycolipids. In the marine environment, it is well established that P availability significantly affects lipid composition in the phytoplankton, whereby non-P sulfur-containing lipids are used to substitute phospholipids in response to P stress. This remodeling offers a significant competitive advantage for these organisms, allowing them to adapt to oligotrophic environments low in P. Until very recently, abundant marine heterotrophic bacteria were thought to lack the capacity for lipid remodelling in response to P deficiency. However, recent work by myself and others has now demonstrated that lipid remodelling occurs in many ecologically important marine heterotrophs, such as the SAR11 and Roseobacter clades, which are not only numerically abundant in marine waters but also crucial players in the biogeochemical cycling of key elements. However, the ecological and physiological consequences of lipid remodeling, in response to nutrient limitation, remain unknown. This is important because I hypothesize that lipid remodeling has important knock-on effects restricting the ability of marine bacteria to deal with both abiotic and biotic stresses, which has profound consequences for the functioning of major biogeochemical cycles. Here I aim to use a synthesis of molecular biology, microbial physiology, and 'omics' approaches to reveal the fitness trade-offs of lipid remodelling in cosmopolitan marine heterotrophic bacteria, providing novel insights into the ecophysiology of lipid remodelling and its consequences for marine nutrient cycling.'

 Publications

year authors and title journal last update
List of publications.
2018 Alastair F. Smith, Branko Rihtman, Rachel Stirrup, Eleonora Silvano, Michaela A. Mausz, David J. Scanlan, Yin Chen
Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in Rhodobacteraceae
published pages: , ISSN: 1751-7362, DOI: 10.1038/s41396-018-0249-z
The ISME Journal 2019-04-04

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ECOLIPID" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ECOLIPID" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PonD (2019)

Particles-on-Demand for Multiscale Fluid Dynamics

Read More  

HydroLieve (2018)

A long-lasting non-migrating hydrogel for relieving chronic pain

Read More  

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More