Opendata, web and dolomites

ZINCLAPS

Light-addressable potentiometric sensors (LAPS) for zinc imaging with high spatiotemporal resolution for elucidating the role of zinc in age related macular degeneration.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ZINCLAPS project word cloud

Explore the words cloud of the ZINCLAPS project. It provides you a very rough idea of what is the project "ZINCLAPS" about.

participates    fluorescence    diseases    submicron    despite    combined    alzheimer    agerelated    contain    treatments    channel    analysing    balance    cellular    functional    age    events    life    molecular    potentials    concentration    addressable    forestall    suspected    conventional    cancer    potentiometric    technique    elucidate    prevent    electrophysiological    disorders    pancreatic    imaging    play    resolution    concentrations    scanning    underlying    retinal    beneficial    eye    treatment    deposits    setup    sensors    amd    extracellular    supplementation    zinc    physiological    reverse    conjunction    basal    pigment    area    slow    speed    time    initiation    altered    diabetes    attachment    spatiotemporal    electrochemical    ion    either    pharmaceutical    poor    photon    retina    disease    surfaces    health    sensitive    cell    degeneration    population    microscopy    industry    cells    macular    ageing    accessible    suffer    light    polarisation    epithelium    attractive    fluxes    surface    tool    quality    planar    laps   

Project "ZINCLAPS" data sheet

The following table provides information about the project.

Coordinator
QUEEN MARY UNIVERSITY OF LONDON 

Organization address
address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS
website: http://www.qmul.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.sems.qmul.ac.uk/staff/research/s.krause
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-06-21   to  2019-08-24

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    QUEEN MARY UNIVERSITY OF LONDON UK (LONDON) coordinator 195˙454.00

Map

 Project objective

Light-addressable potentiometric sensors (LAPS) have great potential as a tool for functional electrochemical imaging of the attachment area of cells, providing information such as ion concentration, extracellular potentials and ion channel activity. The technique is particularly attractive for analysing cell responses of cells with planar polarisation as the cell-surface attachment area is not accessible to conventional electrophysiological measurements. However, current systems suffer either from poor resolution or slow scanning speed. In this project, we propose to develop a novel LAPS setup with high spatiotemporal resolution combined with two-photon fluorescence microscopy that allows imaging of physiological processes with submicron resolution and in real time. Novel zinc sensitive surfaces will be developed and used in conjunction with the new high-resolution and high-speed LAPS setup to investigate the role of zinc in age related macular degeneration (AMD). The retina and the underlying retinal pigment epithelium contain high concentrations of zinc. Several eye disorders are associated with altered zinc balance, and zinc supplementation has become a choice of treatment for diseases like agerelated macular degeneration. Despite its importance in health and diseases of the eye, it is still not well understood how zinc participates in cellular and molecular events and how zinc supplementation might be beneficial. We will investigate zinc fluxes at the basal side of the retinal pigment epithelium where zinc is suspected to play a key role in the formation of deposits and the initiation of AMD. The results of the study may lead to new treatments to prevent, forestall, or reverse the effects of the disease and may also help to elucidate zinc's role in other diseases including type 2 diabetes, pancreatic cancer, and Alzheimer disease and are therefore expected to impact the pharmaceutical industry and increase the quality of life for an ageing population.

 Publications

year authors and title journal last update
List of publications.
2019 Fan Wu, Bo Zhou, Jian Wang, Muchun Zhong, Anirban Das, Michael Watkinson, Karin Hing, De-Wen Zhang, Steffi Krause
Photoelectrochemical Imaging System for the Mapping of Cell Surface Charges
published pages: 5896-5903, ISSN: 0003-2700, DOI: 10.1021/acs.analchem.9b00304
Analytical Chemistry 91/9 2020-01-27
2019 Bo Zhou, Anirban Das, Menno J. Kappers, Rachel A. Oliver, Colin J. Humphreys, Steffi Krause
InGaN as a Substrate for AC Photoelectrochemical Imaging
published pages: 4386, ISSN: 1424-8220, DOI: 10.3390/s19204386
Sensors 19/20 2020-01-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ZINCLAPS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ZINCLAPS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Cartesian Networks (2020)

Cartesian Networks in Early Modern Europe: A Quantitative and Interdisciplinary Approach

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More