Opendata, web and dolomites


New generation of chimeric TLR2-NOD agonist compounds for vaccine adjuvants

Total Cost €


EC-Contrib. €






 FusionPAMPs project word cloud

Explore the words cloud of the FusionPAMPs project. It provides you a very rough idea of what is the project "FusionPAMPs" about.

thereby    innate    ctls    potent    protective    talk    adjuvant    vaccine    ing    molecular    prr    tlr2    microbial    quality    activation    agonists    covalent    regard    lipopeptides    safe    activated    receptors    nlrs    minimizing    peptidoglycan    augment    concentrations    infection    aluminium    cytokines    salt    cells    leads    cell    drives    fusion    modulators    pattern    alum    pathogen    chimeric    surfaces    vaccines    senses    almost    toll    exposed    signal    microbes    modalities    potently    quantity    nod    pprs    primarily    effector    employed    pathogens    adaptive    fragments    vaccination    lipopolysaccharides    cross    pamps    recognition    th2    attractive    lower    lectin    performance    synergistic    new    single    defences    tlrs    turn    prrs    transduction    activate    rely    regulate    direct    expressed    stimulation    immune    immunity    compounds    patterns    mucosal    intracellular    adjuvants    compound    efficient    linking    human   

Project "FusionPAMPs" data sheet

The following table provides information about the project.


Organization address
postcode: 3584 CS

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website
 Total cost 177˙598 €
 EC max contribution 177˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2019-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT UTRECHT NL (UTRECHT) coordinator 177˙598.00


 Project objective

New vaccine modalities need to be developed that can activate more potently the immune system, in this regard, adjuvants augment adaptive immune responses and can improve vaccine performance. Aluminium salt (alum) is the most commonly used adjuvant for human vaccination. However, it drives primarily TH2-effector responses and is not effective for vaccines that target mucosal surfaces. Thus, safe and potent adjuvants need to be developed that can increase and direct vaccine-specific immunity. Recent advances in our understanding of innate immune responses are providing opportunities to design better adjuvants. The innate immune system senses microbes through pattern-recognition receptors (PPRs), which include the Toll-like receptors (TLRs), and intracellular NOD-like receptors (NLRs) and C-type lectin-like (CTLs) receptors that are expressed by immune cells. Activation of these receptors leads to the production of cytokines that provide early defences during infection. Cytokines also regulate adaptive immunity by controlling the quantity and quality of B and T cell activation, which in turn results in protective immune responses to pathogens. Pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides, lipopeptides, and peptidoglycan fragments can activate PPRs and are attractive compounds for the development of new adjuvant. Although during microbial infection many different PRRs are activated, almost all adjuvants that are being developed rely on the stimulation of a single PRR. In this project, we propose that compound adjuvants derived by the covalent linking of two PAMPs (fusion PAMPs), for example, TLR2 and NOD agonists, will ensure that immune cells are being exposed to both, resulting in efficient cross talk of signal transduction pathways and in synergistic immune activation. If so, chimeric immune modulators (fusion PAMPs) can be employed at lower adjuvant concentrations, thereby minimizing unwanted side effects.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FUSIONPAMPS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FUSIONPAMPS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MIGPSC (2018)

Shaping the European Migration Policy: the role of the security industry

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

NPsVLCD (2019)

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Read More