Opendata, web and dolomites

MolNanoTribology SIGNED

Tuning molecular friction and adhesion by atomic/chemical design

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MolNanoTribology project word cloud

Explore the words cloud of the MolNanoTribology project. It provides you a very rough idea of what is the project "MolNanoTribology" about.

paves    simulations    temperature    everyday    disparate    dynamics    car    machinery    absent    atomic    surface    building    lifting    scales    scanning    modifications    111    molecular    slipping    life    substituents    vacuum    nanoscale    length    spinning    remember    efficient    sliding    wheel    microscopy    tend    utmost    grip    act    advantages    constitute    banana    practical    peel    reminds    progress    turn    friction    earthquakes    proper    knew    infinitesimal    efficiency    spins    combining    terpyridine    nearly    discussing    feynman    silver    machines    special    experiments    dissipation    tuning    decades    miniaturization    civilization    prospects    phenomenon    almost    ultra    template    things    said    drift    ubiquity    ball    resolution    nanometer    nano    groups    attempts    porphyrin    imperative    probe    interestingly    molecules    adhesion    tune    endows    contain    bearing    small    becomes    wheels    engines    chemical   

Project "MolNanoTribology" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT BASEL 

Organization address
address: PETERSPLATZ 1
city: BASEL
postcode: 4051
website: www.unibas.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 187˙419 €
 EC max contribution 187˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT BASEL CH (BASEL) coordinator 187˙419.00

Map

 Project objective

Friction is a phenomenon which is present in our everyday life although we tend to remember it only when it is nearly absent such as when “slipping on a banana peel”. Its presence across disparate length scales (earthquakes, car engines down to molecular machines) reminds us of its ubiquity which endows friction of an utmost practical importance. Therefore, attempts to control it are almost as old as civilization. Interestingly, during the past decades we have witnessed a growing progress in miniaturization of devices down to the nanometer scale. “Special problems occur when things get small […] and it might turn out to be advantages if we knew how to design for them”, said Feynman when discussing the prospects of building “infinitesimal machinery”. To achieve this goal, and to design efficient molecular nano-engines, it becomes imperative to know how friction at a molecular level can be controlled. In this project we propose to address this challenge by tuning molecular friction and adhesion via atomic/chemical design. Specifically, we shall study the lifting and sliding of two template molecules (porphyrin and terpyridine) over a Silver (111) surface. These molecules contain substituents groups that act as spinning molecular wheels when sliding over a surface. By proper modifications of these groups (wheels) we can tune the grip/drift response and the efficiency of the ball bearing over which the molecular wheel spins. Here we aim to provide an atomic level understanding of these processes by combining state-of-the-art molecular dynamics simulations with high resolution scanning-probe microscopy experiments conducted in ultra-high-vacuum conditions at low temperature. This will constitute a major step forward in our understanding of dissipation processes at the nanoscale and paves the way to tune molecular friction and adhesion by atomic/chemical design.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MOLNANOTRIBOLOGY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MOLNANOTRIBOLOGY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More