Opendata, web and dolomites

3DBIOLUNG SIGNED

Bioengineering lung tissue using extracellular matrix based 3D bioprinting

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 3DBIOLUNG project word cloud

Explore the words cloud of the 3DBIOLUNG project. It provides you a very rough idea of what is the project "3DBIOLUNG" about.

chronic    bioprinting    generate    thought    worldwide    hybrid    manufacturing    vivo    1000    bioprinters    critical    custom    desperately    feasibility    prevalence    65    fiction    synthetic    anatomical    murine    lung    combining    bioprint    ex    cues    tissue    science    biologically    diseases    recipient    generating    gas    disease    constructs    grown    area    bioreactor    printing    patients    scalable    lack    immune    3d    seeded    innovative    functional    once    ideally    mimicking    awaiting    first    biological    immunosuppression    tissues    materials    annually    scaffolds    engineering    bioengineering    architecture    transplants    exchange    4000    prior    million    human    options    xenogeneic    angiogenesis    heterogeneity    indicate    differences    reproducible    transplant    patient    printed    receive    primary    conductive    option    difficulty    regeneration    transplantation    acellular    mature    models    obviating    cells    sources    demonstrating    reproducibility    stage   

Project "3DBIOLUNG" data sheet

The following table provides information about the project.

Coordinator
LUNDS UNIVERSITET 

Organization address
address: Paradisgatan 5c
city: LUND
postcode: 22100
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 1˙499˙975 €
 EC max contribution 1˙499˙975 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUNDS UNIVERSITET SE (LUND) coordinator 1˙499˙975.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.

An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.

The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DBIOLUNG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3DBIOLUNG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

EXTREME (2020)

The Epistemology and Ethics of Fundamentalism

Read More  

PLAT_ACE (2019)

A new platform technology for the on-demand access to large acenes

Read More