Opendata, web and dolomites

ELECTROSULF SIGNED

Electrochemical Sulfonylation of Lysine Residues in Continuous Flow Microreactors.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ELECTROSULF project word cloud

Explore the words cloud of the ELECTROSULF project. It provides you a very rough idea of what is the project "ELECTROSULF" about.

ubiquitous    oxidation    me    synthetic    drugs    constant    supporting    limitation    photocatalysis    literature    modern    biological    background    chemists    fluorescent    sulfonylation    minimize    last    prof    guarantee    alkylation    consequence    preferred    appealing    connected    transfer    pharmaceutical    mass    peptide    achievement    cross    proven    difficult    continuous    selectively    discovered    modification    timothy    catalysis    microreactor    chemistry    electrolyte    introduce    expertise    cytotoxic    acylation    lysine    euml    market    coupling    transition    arylation    organic    older    molecules    peptides    electrosulf    transformations    microreactors    motivate    experiencing    moieties    strategies    paving    mechanism    free    advantageous    look    relevance    oxidative    drawbacks    no    greener    reaction    miniaturization    condensation    labels    reported    sulfonamide    global    sulfonylations    metal    electrochemical    flow    properly    employment    electrosynthesis    sulfonyl    modify    group    alternative    difficulties    employed    amine    handles    thanks    re   

Project "ELECTROSULF" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT EINDHOVEN 

Organization address
address: GROENE LOPER 3
city: EINDHOVEN
postcode: 5612 AE
website: www.tue.nl/en

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 175˙572 €
 EC max contribution 175˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-05   to  2021-09-04

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT EINDHOVEN NL (EINDHOVEN) coordinator 175˙572.00

Map

 Project objective

Peptides are important molecules, ubiquitous in biological systems. Their relevance in the pharmaceutical sector is proven by the constant increase which the global market of peptide-based drugs is experiencing in the last years. As a consequence, several methods have been developed to modify peptides (e.g. condensation, cross-coupling, transition-metal catalysis, and photocatalysis), being lysine with its free amine one of the most preferred handles used by chemists to introduce a new moieties, e.g. cytotoxic drugs or fluorescent labels. Several transformations as alkylation, arylation, oxidation, acylation and condensation have been described for lysine. However, it would be very appealing to introduce selectively a sulfonyl group, which would result in the formation of a sulfonamide, a functionality which is widely employed in drugs. Although several oxidative sulfonylations are reported in the literature, their drawbacks motivate me to look for greener synthetic strategies. Electrosynthesis represents an advantageous alternative, which has been re-discovered in the last years also thanks to its employment in continuous-flow microreactors. With the support of this modern technology, it is possible to minimize the difficulties connected to older electrochemical processes (such as mass-transfer limitation, the need of a supporting electrolyte,and the difficult scale-up). ELECTROSULF aims at developing a novel sulfonylation of lysine by electrochemical means with the use of a flow microreactor. The reaction mechanism will be also properly studied. My strong background in organic chemistry together with Prof. Timothy Noël’s expertise in flow processes and reaction miniaturization will guarantee the success of ELECTROSULF, whose achievement will have a great impact on the pharmaceutical sector, paving the path to a new approach for peptide modification.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ELECTROSULF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ELECTROSULF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More