Opendata, web and dolomites

ELECTROSULF SIGNED

Electrochemical Sulfonylation of Lysine Residues in Continuous Flow Microreactors.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ELECTROSULF project word cloud

Explore the words cloud of the ELECTROSULF project. It provides you a very rough idea of what is the project "ELECTROSULF" about.

difficult    reported    literature    microreactors    relevance    alternative    experiencing    constant    proven    modification    timothy    employed    transfer    supporting    arylation    re    thanks    fluorescent    paving    older    mechanism    background    transition    discovered    electrosulf    electrochemical    preferred    euml    organic    properly    labels    achievement    last    difficulties    microreactor    prof    chemists    sulfonylation    oxidative    global    selectively    electrosynthesis    cross    employment    appealing    mass    look    coupling    minimize    miniaturization    handles    lysine    greener    expertise    limitation    moieties    me    modern    sulfonamide    no    synthetic    alkylation    continuous    oxidation    modify    group    acylation    introduce    electrolyte    reaction    cytotoxic    drawbacks    free    guarantee    peptide    catalysis    advantageous    ubiquitous    photocatalysis    flow    chemistry    molecules    amine    metal    drugs    transformations    connected    consequence    pharmaceutical    condensation    motivate    biological    peptides    sulfonylations    market    strategies    sulfonyl   

Project "ELECTROSULF" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT EINDHOVEN 

Organization address
address: GROENE LOPER 3
city: EINDHOVEN
postcode: 5612 AE
website: www.tue.nl/en

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 175˙572 €
 EC max contribution 175˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-05   to  2021-09-04

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT EINDHOVEN NL (EINDHOVEN) coordinator 175˙572.00

Map

 Project objective

Peptides are important molecules, ubiquitous in biological systems. Their relevance in the pharmaceutical sector is proven by the constant increase which the global market of peptide-based drugs is experiencing in the last years. As a consequence, several methods have been developed to modify peptides (e.g. condensation, cross-coupling, transition-metal catalysis, and photocatalysis), being lysine with its free amine one of the most preferred handles used by chemists to introduce a new moieties, e.g. cytotoxic drugs or fluorescent labels. Several transformations as alkylation, arylation, oxidation, acylation and condensation have been described for lysine. However, it would be very appealing to introduce selectively a sulfonyl group, which would result in the formation of a sulfonamide, a functionality which is widely employed in drugs. Although several oxidative sulfonylations are reported in the literature, their drawbacks motivate me to look for greener synthetic strategies. Electrosynthesis represents an advantageous alternative, which has been re-discovered in the last years also thanks to its employment in continuous-flow microreactors. With the support of this modern technology, it is possible to minimize the difficulties connected to older electrochemical processes (such as mass-transfer limitation, the need of a supporting electrolyte,and the difficult scale-up). ELECTROSULF aims at developing a novel sulfonylation of lysine by electrochemical means with the use of a flow microreactor. The reaction mechanism will be also properly studied. My strong background in organic chemistry together with Prof. Timothy Noël’s expertise in flow processes and reaction miniaturization will guarantee the success of ELECTROSULF, whose achievement will have a great impact on the pharmaceutical sector, paving the path to a new approach for peptide modification.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ELECTROSULF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ELECTROSULF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More