Opendata, web and dolomites

HighResCells SIGNED

A synergistic approach toward understanding receptor signaling in the cell at very high resolution

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HighResCells" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT ZURICH 

Organization address
address: RAMISTRASSE 71
city: ZURICH
postcode: 8006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 8˙273˙457 €
 EC max contribution 8˙273˙457 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-SyG
 Funding Scheme ERC-SyG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT ZURICH CH (ZURICH) coordinator 4˙774˙500.00
2    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) participant 1˙772˙500.00
3    AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS ES (MADRID) participant 1˙726˙457.00

Map

 Project objective

Members of the Epidermal Growth Factors Receptor family (EGFRs) influence cell growth and proliferation, and are pivotal in all phases of tumor progression. We will use this receptor family as an example with which to develop a ground-breaking new technology to study cellular signaling towards atomic resolution, in situ. Therefore, we propose to employ an interdisciplinary approach for studying EGFR family of receptors, where we follow their conformational and oligomeric states as well as bound ligands and signal transduction molecules during different activation states at atomic resolution in situ. We will progress from engineered to native receptor forms, and from defined membrane vesicles to whole cells, and employ 3D structure analysis by cryo-electron tomography, greatly enhanced by novel image processing approaches, mass spectroscopy definitions of receptor modifications and interaction partners, as well as advanced protein engineering to identify, orient and freeze receptors for this method development. This collaborative project addresses the properties of the EGFR family across a wide range of complexity and dimensions, in the cellular environment, through their high-resolution structures and changes during receptor recycling. This collaborative network, addressing EGFR from complementary angles, is most likely to generate substantial new information on these assemblies and to yield a deep understanding of the mechanisms underlying their structure and function. The EGFR family has been the focus of many tumor therapies, with the aim of intercepting their signaling, and this project will contribute to a more detailed understanding of their mode of action and thus the more rational development of such therapies in the future. However, the technology that will be developed will be generally applicable and may thus help to contribute to a paradigm change for structural biology, enabling atomic resolution description of receptors in their cellular environment.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HIGHRESCELLS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HIGHRESCELLS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HYPATIA (2019)

Privacy and Utility Allied

Read More  

AdaptiveResponse (2018)

The evolution of adaptive response mechanisms

Read More  

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More