Opendata, web and dolomites

AlgCoustics SIGNED

Single-step disentanglement and fractionation of microalgal high-value products through acoustophoresis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AlgCoustics project word cloud

Explore the words cloud of the AlgCoustics project. It provides you a very rough idea of what is the project "AlgCoustics" about.

pharmaceutical    biomass    generation    industries    biorefineries    microwaves    eliminating    land    ultrasonic    frequency    broken    proteins    disentanglement    finely    multiple    areal    disruption    proposing    changing    biogas    marine    ten    fine    conventional    arable    lignocellulosic    external    fold    rendering    selective    lasers    carotenoids    solvents    waste    micro    separation    molecules    cosmetics    terrestrial    extraction    productivities    previously    waves    found    tuning    employed    employing    bioethanol    90    liquids    ionic    feasible    economically    breakdown    economic    unfortunately    game    frequencies    regarding    furtherance    fibres    stages    viability    sees    next    single    biomaterials    ultrasound    biorefinery    unfeasible    algae    multiproduct    chemicals    compounds    made    tuned    nanostructures    technologies    seaweed    acoustic    components    food    valorization    advantages    acids    grow    combination    microalgal    valorized    fatty    aquatic    ranges    renewable    cell    complete    aggressive    carbohydrates    energy    governed    biodiesel    feed   

Project "AlgCoustics" data sheet

The following table provides information about the project.

Coordinator
WAGENINGEN UNIVERSITY 

Organization address
address: DROEVENDAALSESTEEG 4
city: WAGENINGEN
postcode: 6708 PB
website: http://www.wageningenur.nl/nl.htm

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 187˙572 €
 EC max contribution 187˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-01-06   to  2022-01-05

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WAGENINGEN UNIVERSITY NL (WAGENINGEN) coordinator 187˙572.00

Map

 Project objective

Next generation biomass resources such as marine seaweed and micro-algae have advantages in comparison to terrestrial lignocellulosic biomass as they can grow on non-arable land at higher areal productivities. Aquatic biomass can provide renewable energy (e.g. biodiesel, bioethanol and biogas) as well as high-value molecules such as carotenoids, fatty acids, carbohydrates, proteins and food fibres, which can be used in food, feed, cosmetics, biomaterials, nanostructures and pharmaceutical industries. However, in order to greatly increase the economic viability of aquatic biomass, all components found in the biomass need to be valorized. Unfortunately, valorization of multiple biomass components is not possible using current/conventional biorefinery technologies, where up to 90% of the biomass is being treated as a waste. The value of these broken-down compounds sees more than a ten-fold reduction, rendering the biorefinery economically unfeasible. Therefore, in furtherance of developing multiproduct biorefineries, selective and economically feasible extraction and separation technologies will need to be developed and implemented. Significant microalgal cell disruption and extraction advances have been recently made by employing external fields such as lasers, ultrasonic waves and microwaves, in combination with less aggressive solvents and ionic liquids. However, the issues regarding the use of chemicals and multiple separation stages remain. Thus, we are proposing a game-changing single-step disentanglement and separation of microalgal high-value components by using acoustic waves at different frequencies allowing thus a complete process fine-tuning and eliminating the need for chemicals. Moreover, by including our previously-developed ultrasound disruption technology, the whole cell breakdown, extraction and separation steps could be reduced to one single process governed and finely-tuned through the employed frequency ranges.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ALGCOUSTICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ALGCOUSTICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More