Opendata, web and dolomites

AlgCoustics SIGNED

Single-step disentanglement and fractionation of microalgal high-value products through acoustophoresis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AlgCoustics project word cloud

Explore the words cloud of the AlgCoustics project. It provides you a very rough idea of what is the project "AlgCoustics" about.

biorefinery    biomass    microwaves    economically    food    productivities    complete    technologies    external    finely    acids    economic    previously    furtherance    cosmetics    renewable    advantages    feasible    waste    regarding    changing    valorized    valorization    bioethanol    aquatic    liquids    aggressive    chemicals    broken    90    disruption    frequencies    microalgal    algae    seaweed    feed    lignocellulosic    tuned    compounds    unfeasible    found    waves    marine    arable    areal    micro    viability    molecules    energy    biomaterials    single    land    biodiesel    game    made    ultrasonic    conventional    ten    proteins    biogas    eliminating    sees    stages    combination    biorefineries    extraction    employed    unfortunately    fold    grow    lasers    ionic    tuning    frequency    carbohydrates    separation    employing    multiple    selective    disentanglement    breakdown    fatty    multiproduct    cell    next    carotenoids    ranges    industries    governed    generation    fine    fibres    acoustic    terrestrial    pharmaceutical    solvents    components    ultrasound    rendering    proposing    nanostructures   

Project "AlgCoustics" data sheet

The following table provides information about the project.

Coordinator
WAGENINGEN UNIVERSITY 

Organization address
address: DROEVENDAALSESTEEG 4
city: WAGENINGEN
postcode: 6708 PB
website: http://www.wageningenur.nl/nl.htm

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 187˙572 €
 EC max contribution 187˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-01-06   to  2022-01-05

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WAGENINGEN UNIVERSITY NL (WAGENINGEN) coordinator 187˙572.00

Map

 Project objective

Next generation biomass resources such as marine seaweed and micro-algae have advantages in comparison to terrestrial lignocellulosic biomass as they can grow on non-arable land at higher areal productivities. Aquatic biomass can provide renewable energy (e.g. biodiesel, bioethanol and biogas) as well as high-value molecules such as carotenoids, fatty acids, carbohydrates, proteins and food fibres, which can be used in food, feed, cosmetics, biomaterials, nanostructures and pharmaceutical industries. However, in order to greatly increase the economic viability of aquatic biomass, all components found in the biomass need to be valorized. Unfortunately, valorization of multiple biomass components is not possible using current/conventional biorefinery technologies, where up to 90% of the biomass is being treated as a waste. The value of these broken-down compounds sees more than a ten-fold reduction, rendering the biorefinery economically unfeasible. Therefore, in furtherance of developing multiproduct biorefineries, selective and economically feasible extraction and separation technologies will need to be developed and implemented. Significant microalgal cell disruption and extraction advances have been recently made by employing external fields such as lasers, ultrasonic waves and microwaves, in combination with less aggressive solvents and ionic liquids. However, the issues regarding the use of chemicals and multiple separation stages remain. Thus, we are proposing a game-changing single-step disentanglement and separation of microalgal high-value components by using acoustic waves at different frequencies allowing thus a complete process fine-tuning and eliminating the need for chemicals. Moreover, by including our previously-developed ultrasound disruption technology, the whole cell breakdown, extraction and separation steps could be reduced to one single process governed and finely-tuned through the employed frequency ranges.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ALGCOUSTICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ALGCOUSTICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More