Opendata, web and dolomites

AlgCoustics SIGNED

Single-step disentanglement and fractionation of microalgal high-value products through acoustophoresis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AlgCoustics project word cloud

Explore the words cloud of the AlgCoustics project. It provides you a very rough idea of what is the project "AlgCoustics" about.

areal    fibres    nanostructures    single    frequencies    found    aquatic    terrestrial    biomass    external    biogas    broken    cell    fold    combination    employed    fine    furtherance    bioethanol    carotenoids    separation    sees    grow    generation    advantages    chemicals    industries    marine    ranges    valorized    next    liquids    carbohydrates    productivities    land    unfortunately    microalgal    disentanglement    economically    viability    biomaterials    energy    technologies    valorization    feasible    biodiesel    selective    multiproduct    stages    biorefineries    finely    food    acoustic    conventional    micro    molecules    pharmaceutical    complete    lasers    tuning    rendering    tuned    algae    disruption    eliminating    90    game    waves    employing    changing    governed    lignocellulosic    cosmetics    extraction    breakdown    components    feed    ionic    economic    made    compounds    ultrasonic    fatty    waste    renewable    frequency    regarding    microwaves    unfeasible    ten    seaweed    biorefinery    proposing    multiple    ultrasound    arable    proteins    acids    aggressive    solvents    previously   

Project "AlgCoustics" data sheet

The following table provides information about the project.

Coordinator
WAGENINGEN UNIVERSITY 

Organization address
address: DROEVENDAALSESTEEG 4
city: WAGENINGEN
postcode: 6708 PB
website: http://www.wageningenur.nl/nl.htm

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 187˙572 €
 EC max contribution 187˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-01-06   to  2022-01-05

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WAGENINGEN UNIVERSITY NL (WAGENINGEN) coordinator 187˙572.00

Map

 Project objective

Next generation biomass resources such as marine seaweed and micro-algae have advantages in comparison to terrestrial lignocellulosic biomass as they can grow on non-arable land at higher areal productivities. Aquatic biomass can provide renewable energy (e.g. biodiesel, bioethanol and biogas) as well as high-value molecules such as carotenoids, fatty acids, carbohydrates, proteins and food fibres, which can be used in food, feed, cosmetics, biomaterials, nanostructures and pharmaceutical industries. However, in order to greatly increase the economic viability of aquatic biomass, all components found in the biomass need to be valorized. Unfortunately, valorization of multiple biomass components is not possible using current/conventional biorefinery technologies, where up to 90% of the biomass is being treated as a waste. The value of these broken-down compounds sees more than a ten-fold reduction, rendering the biorefinery economically unfeasible. Therefore, in furtherance of developing multiproduct biorefineries, selective and economically feasible extraction and separation technologies will need to be developed and implemented. Significant microalgal cell disruption and extraction advances have been recently made by employing external fields such as lasers, ultrasonic waves and microwaves, in combination with less aggressive solvents and ionic liquids. However, the issues regarding the use of chemicals and multiple separation stages remain. Thus, we are proposing a game-changing single-step disentanglement and separation of microalgal high-value components by using acoustic waves at different frequencies allowing thus a complete process fine-tuning and eliminating the need for chemicals. Moreover, by including our previously-developed ultrasound disruption technology, the whole cell breakdown, extraction and separation steps could be reduced to one single process governed and finely-tuned through the employed frequency ranges.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ALGCOUSTICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ALGCOUSTICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

VINCI (2020)

The Value of Information and Choice to Improve Control.

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More