Opendata, web and dolomites

SCORPION SIGNED

Strongly CORrelated Polaritons In Optoelectronic Nanostructures

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SCORPION project word cloud

Explore the words cloud of the SCORPION project. It provides you a very rough idea of what is the project "SCORPION" about.

packages    elusive    simulators    ising    progress    transition    hard    semiconductors    polaritons    electron    hybrid    bosons    superconductivity    emerge    polariton    near    correlations    model    simulating    polynomial    2des    search    point    correlated    materials    condensed    deterministic    remained    optimization    single    cavity    interacting    simultaneously    experimental    drive    couple    cavities    comprising    multicavity    transitions    light    energy    quasi    goals    condensation    realize    conductance    2d    arrays    induce    intensely    photon    12    dimensional    observation    suggests    np    undergo    inserted    frontier    dealing    platform    theoretical    particles    similarly    easily    types    formed    ground    anticipate    coupling    excitons    signatures    limited    models    photons    physics    completely    condensate    optoelectronic    situ    differential    integration    time    optically    threshold    tunable    polaritonic    nature    tuned    nonlinear   

Project "SCORPION" data sheet

The following table provides information about the project.

Coordinator
STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN 

Organization address
address: WINTHONTLAAN 2
city: UTRECHT
postcode: 3526 KV
website: www.fom.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN NL (UTRECHT) coordinator 1˙500˙000.00

Map

 Project objective

Polaritons, part-light part-matter quasi-particles, are formed when photons in a cavity couple strongly to excitons in semiconductors. Polaritons are interacting bosons which can undergo phase transitions driven by light. The hybrid nature of polaritons suggests that both light and matter become strongly correlated near the transition point. Correlated states of light in cavity arrays have been intensely investigated theoretically for over 12 years, but experimental progress has been limited by challenges in the integration of highly nonlinear materials with cavity arrays. Similarly, correlated states of matter (e.g. superconductivity) emerging near polaritonic phase transitions have generated strong theoretical interest in recent years, but their experimental observation has remained elusive. In this project, we will realize strongly correlated light-matter systems in order to solve optimization problems and induce superconductivity with light. We will achieve these goals using a single experimental platform comprising tunable cavities where semiconductors can be easily inserted and light-matter coupling can be tuned in-situ. In work package 1, we will measure photon correlations in multicavity systems simulating Ising models. We will use these Ising simulators to solve non-deterministic polynomial time (NP)-hard optimization problems, e.g. finding the ground state energy of a 2D Ising model. In work package 2, we will couple a polariton condensate to a two-dimensional electron system (2DES). We will optically drive this system across the polariton condensation threshold, and search for signatures of superconductivity in differential conductance measurements of the 2DES. We anticipate the results of both work packages to open a new frontier of condensed matter physics dealing with simultaneously correlated light and matter. Moreover, completely new types of optoelectronic devices controlled by light are likely to emerge.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCORPION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SCORPION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More