Opendata, web and dolomites

CARINE SIGNED

Coherent diffrAction foR a look Inside Nanostructures towards atomic rEsolution: catalysis and interface

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CARINE" data sheet

The following table provides information about the project.

Coordinator
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

Organization address
address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015
website: www.cea.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙875˙000 €
 EC max contribution 1˙875˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-11-01   to  2024-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES FR (PARIS 15) coordinator 1˙793˙750.00
2    EUROPEAN SYNCHROTRON RADIATION FACILITY FR (GRENOBLE) participant 81˙250.00

Map

 Project objective

Heterogeneous catalysis of nanoparticles has recently emerged as highly promising way to speed up catalytic processes due to their far higher surface area compared to bulk materials. But they face significant challenges in achieving high catalytic activity and sufficient durability. A key problem has been that all existing approaches to the characterization of atomic scale phenomena in these materials either lack structural specificity or can be employed under highly unrealistic catalytic environments. As an example, operando x-ray catalysis has often been carried out under idealized conditions and averaging information from macroscopic facets. This approach suffers from the lack of transferability to nanocrystalline systems. To tackle this problem, I am developing new state-of-the-art in situ techniques based on coherent x-ray scattering and complementary chemical characterization, with which I will optimize catalyst and reactor operations simultaneously. This is the ambition of the CARINE project to study in situ and operando the structural evolution of catalytic nanoparticles in realistic conditions during reaction by using the unique capabilities of coherent diffraction Bragg imaging (CDI). My proposed work builds on my recent exciting proof-of-concept experiments using Pt nanocrystals that demonstrate the sensitivity and spatial resolution of CDI under liquid conditions. As dedicated instruments for CDI have just reached user operation, it is only now that this new imaging technique can be applied during reaction and can probe structural changes of individual nanocrystals under conditions where up to now, no other techniques could probe the relevant parameters. My project will shed light into most relevant unsolved issues (durability, activity…) that limit the efficiency of today’s industrial processes and will open new horizons with outstanding impact in catalytic research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CARINE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CARINE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

Malaria POC (2019)

Ultrasensitive detection of transmissible malaria

Read More  

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More