Opendata, web and dolomites


Crystal phase engineering of Au nanoparticles for enhanced solar fuel generation

Total Cost €


EC-Contrib. €






Project "C[Au]PSULE" data sheet

The following table provides information about the project.


Organization address
address: OUDE MARKT 13
city: LEUVEN
postcode: 3000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 166˙320 €
 EC max contribution 166˙320 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Artificial photocatalysis that converts CO2 into carbon fuels or produces clean energy such as H2 or NH3 from water and N2 using solar energy is an effective strategy to effectively reduce the carbon footprint and to develop a low carbon emission economy and sustainable energy in the future. Noble metal decorated photocatalysts have widely been investigated for improving the photocatalytic performance, however the effect of noble metal crystal phases on the photocatalytic performance is still an unexplored field. This project aims at exploiting the reduced coordination of surface metal atoms in non-standard crystal phases of metallic gold (Au) to create more effective photocatalysts. Specifically, the relationship between the Au crystal phase and the photoactivity of Au-perovskite composites will be systematically investigated by combining various advanced characterization techniques. Additionally, for achieving highly efficient Au-perovskite photocatalysts the modification of non-standard crystal phase Au by constructing crystal-phase-heterostructure and alloying with atom-thick metal shell and the optimization of charge migration pathways in the composites will be performed. Using single molecule fluorescence microscopy, the photocatalytic reaction pathways and the dynamics process over Au-perovskite photocatalysts will be elucidated.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "C[AU]PSULE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "C[AU]PSULE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SIMIS (2020)

Strongly Interacting Mass Imbalanced Superfluid with ultracold fermions

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More