SOLIDSPINQOPT

Quantum Optics with Spins in Solid State: The Power of Ensembles

 Coordinatore RIJKSUNIVERSITEIT GRONINGEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-02-01   -   2017-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    RIJKSUNIVERSITEIT GRONINGEN

 Organization address address: Broerstraat 5
city: GRONINGEN
postcode: 9712CP

contact info
Titolo: Dr.
Nome: H.D.
Cognome: Veldhuis
Email: send email
Telefono: +31 50 3634142
Fax: +31 50 363 4500

NL (GRONINGEN) hostInstitution 1˙500˙000.00
2    RIJKSUNIVERSITEIT GRONINGEN

 Organization address address: Broerstraat 5
city: GRONINGEN
postcode: 9712CP

contact info
Titolo: Prof.
Nome: Caspar Heimen
Cognome: Van Der Wal
Email: send email
Telefono: +31 50 363 4555
Fax: +31 50 363 4879

NL (GRONINGEN) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

coherence    solid    pulses    experiments    quantum    electron    optical    donor    interaction    gives    correlations    bound    lattice    nuclear    ensembles    spin    spins    preparing    techniques    conversion    single   

 Obiettivo del progetto (Objective)

'Quantum states of optical pulses can be controlled with great accuracy, and in solid state precise control over quantum states of spins has been achieved. Conversion of such optical quantum states into spin quantum states, and vice versa, is highly relevant for quantum information science, but appears to be more challenging. This proposal aims at a study of such quantum-state conversion, and at developing it into a fast and robust technique with high fidelity. The project builds on the established idea that spins in semiconductors provide a promising system for such research, but pioneers two innovations. A key ingredient is to use ensembles of electron spins, instead of the more widely studied case of an individual spin in a quantum dot. Using ensembles gives access to strong interaction between spins and highly-directional optical fields in a robust manner, without a need for high-finesse cavities. This is vital for the second innovation, which is to use projective measurement with quantum optical techniques as a robust tool for preparing very pure correlations between quantum states of spins and optical pulses. The correlations originate from spin-flip Raman transitions at the single photon level, and this approach also gives access to studying entanglement between spins that are separated by a large distance.

During this project, the same quantum optical techniques will be used for time-resolved probing of the loss of quantum coherence, and initialization experiments aimed at preparing the solid-state environment in a state that yields longer spin coherence times. The experiments use donor-bound electron spins in GaAs where spin decoherence is mainly due to interaction with fluctuating nuclear spins in the host lattice. The project includes a new approach for pumping these fluctuations away. Work with donor-bound electrons in ZnSe, where the lattice has nuclear spin zero, explores how the single nuclear spin of the donor can act as a long-lived quantum memory.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CD-LINK (2013)

Celiac disease: from lincRNAs to disease mechanism

Read More  

CMR (2010)

"Cosmic ray acceleration, magnetic field and radiation hydrodynamics"

Read More  

LOFARCORE (2014)

Unravelling the Cosmic Reionization History

Read More