PV/T/D

Multifunctional PV/Thermal/Daylighting Roof Panels for Atrium Buildings and Large Green Houses

 Coordinatore THE UNIVERSITY OF NOTTINGHAM 

 Organization address address: University Park
city: NOTTINGHAM
postcode: NG7 2RD

contact info
Titolo: Mr.
Nome: Paul
Cognome: Cartledge
Email: send email
Telefono: +44 115 9515679
Fax: +44 115 9513633

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 211˙510 €
 EC contributo 211˙510 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-03-21   -   2013-09-20

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF NOTTINGHAM

 Organization address address: University Park
city: NOTTINGHAM
postcode: NG7 2RD

contact info
Titolo: Mr.
Nome: Paul
Cognome: Cartledge
Email: send email
Telefono: +44 115 9515679
Fax: +44 115 9513633

UK (NOTTINGHAM) coordinator 211˙510.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

energy    heat    daylighting    buildings    commercial    expertise    pv    atrium    multifunctional    concentration    total    consumption    radiation    thermal    carefully    researcher    roof    green    panel    solar   

 Obiettivo del progetto (Objective)

'This International Fellowship will bring an excellent Chinese researcher to work in the Europe. The project has been carefully chosen to match the researcher's expertise in solar concentration and desalination with the expertise in PV/Thermal and daylighting at the University of Nottingham so as to maximise the benefit to the Europe. The proposed project aims to investigate a novel multifunctional PV/Thermal/Daylighting (PV/T/D) roof panel for atrium buildings and large green houses. The panel has a structure containing micro dielectric Compound Parabolic Concentrators (CPCs) to provide concentration of the solar radiation coming from a certain range of sky angle and meanwhile allow the rest of solar radiation to transmit for daylighting. As a result, the panel will also provide a solar shading function and an option to incorporate concentrating PV for PV/Thermal applications. The principle of perforated plate heat recovery will be employed to remove heat rejection from PV and reduce heat gain to the atrium (or green house) space to mitigate the summer overheating problem. In the EU, about half of the total energy consumption is associated with buildings and of this, about 40% is utilised in the sector of commercial buildings. Artificial lighting accounts for 20-40% of the total electricity consumption in commercial and office buildings. The proposed multifunctional PV/T/D roof panels may play an important role in promoting solar energy applications in buildings, and hence make a significant contribution to the EU target in cutting CO2 emissions. Development of the proposed technology requires comprehensive scientific knowledge including solar concentration, daylighting, PV/Thermal and heat transfer. Training of the researcher will be achieved through regular supervision and mentoring and a carefully managed research programme including computer modelling, testing and monitoring of the proposed technology as well as economic and environmental analyses.'

Altri progetti dello stesso programma (FP7-PEOPLE)

GSINTA (2013)

GNSS Signal-in-Space Integrity Assurance

Read More  

PALEOCARB (2009)

Role of the marine carbon cycle in the climate system

Read More  

GEOSOX (2012)

GEOSOX: Geochronology of secondary oxide minerals in bedrock and fluid flow and deformation histories

Read More