Opendata, web and dolomites

BILITOLERANCE SIGNED

Control of disease tolerance to infection by Biliverdin Reductase A

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BILITOLERANCE project word cloud

Explore the words cloud of the BILITOLERANCE project. It provides you a very rough idea of what is the project "BILITOLERANCE" about.

direct    survival    provides    tolerance    pathogen    pro    relies    host    disease    infections    trade    signals    unexplored    led    bilirubin    fitness    hydrocarbon    limits    biliverdin    carry    parenchyma    potent    pathogens    illustrated    central    bilitolerance    coupled    enzyme    confer    tested    receptor    catabolizing    of    heme    strategy    negative    anti    oxygenase    exerting    conserved    chain    multiple    modulate    iron    mechanism    lipid    emergence    sequestering    catabolism    oxidative    output    protein    genes    containment    cells    shaped    immunopathology    macrophages    offs    aryl    activation    possibly    evolutionary    evolution    effector    infection    said    defense    deleterious    preserve    health    immune    primarily    peroxidation    characterizing    limit    expression    clearance    pressure    oxidant    reductase    compromising    resistance    imposed    tissues    countervailing    functional    stress    hypothesis    mechanisms    presumably    lipophilic    ahr    bvra    resident    function    conversion    ferritin    selective    tissue    expulsion    damage   

Project "BILITOLERANCE" data sheet

The following table provides information about the project.

Coordinator
FUNDACAO CALOUSTE GULBENKIAN 

Organization address
address: AVENIDA BERNA 45
city: LISBOA
postcode: 1000
website: www.igc.gulbenkian.pt

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 160˙635 €
 EC max contribution 160˙635 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2021-02-04

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACAO CALOUSTE GULBENKIAN PT (LISBOA) coordinator 160˙635.00

Map

 Project objective

The immune system was shaped through evolution, primarily through the selective pressure imposed by pathogens. This led to the emergence of multiple mechanisms that limit the negative impact of pathogens on host health and fitness. The best recognized defense strategy against infections relies on resistance mechanisms that aim at pathogen containment, expulsion or clearance. While crucial for host survival to infection, resistance mechanisms can carry significant trade-offs, often driven by oxidative stress and damage imposed to host parenchyma cells, and in some cases compromising the functional output of host tissues, i.e. immunopathology. Presumably for this reason, resistance mechanisms are coupled to countervailing oxidative stress responses that preserve parenchyma tissue function. These provide tissue damage control without exerting a direct negative impact on pathogens and as such are said to confer disease tolerance to infection. This defense strategy relies on the expression of a number of evolutionary conserved effector genes controlling the pro-oxidant effects of iron and heme, as illustrated for the heme catabolizing enzyme heme oxygenase 1 or the iron sequestering protein ferritin H chain. BILITOLERANCE aims at identifying and characterizing an unexplored and possibly central component of this tissue damage control mechanism that relies on the conversion of the end-product of heme catabolism biliverdin into bilirubin, by biliverdin reductase A (BVRA). The central hypothesis to be tested by BILITOLERANCE is that bilirubin generated by BVRA provides a potent lipophilic anti-oxidant defense mechanism that limits the deleterious effects of lipid peroxidation. Moreover BILITOLERANCE will test the hypothesis that bilirubin also signals via the aryl hydrocarbon receptor (AhR) to modulate the activation of tissue-resident macrophages and promote tissue damage control and disease tolerance to infection.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BILITOLERANCE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BILITOLERANCE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

PocketLight (2020)

Compact all-fibre nonlinear resonators as technological platform for a new generation of miniaturised light sources.

Read More  

SingleCellAI (2019)

Deep-learning models of CRISPR-engineered cells define a rulebook of cellular transdifferentiation

Read More