Opendata, web and dolomites

CVVOC SIGNED

The ecological consequences of chemotypic variation of damage-induced volatile organic compounds in sagebrush (Artemisia tridentata)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CVVOC project word cloud

Explore the words cloud of the CVVOC project. It provides you a very rough idea of what is the project "CVVOC" about.

antinutritional    signaling    ecological    defenses    undamaged    consistent    adjacent    heritable    plant    herbivores    hypothesis    ing    once    chemotypes    molecular    damage    competitors    tridentata    phenotypic    reduces    sagebrush    had    private    environment    chemotypic    expertise    mechanism    consumers    limited    found    neighboring    communication    compounds    blends    insect    cues    expressed    tissue    toxic    eavesdropped    benefit    impressive    attack    plants    morphological    voc    demonstrated    combining    distinguishing    herbivore    prime    emitter    mediated    vocs    time    induce    damaged    resistance    repellent    attacking    variation    warning    rigorously    artemisia    ecology    efforts    experiments    defense    ed    chemistry    vascular    volatile    metabolites    combat    emit    collaborators    structures    emitted    organic    chemotype    biology    prior    additional    secondary    species    interactions    controversial    constitutively    spines    host    synergistic   

Project "CVVOC" data sheet

The following table provides information about the project.

Coordinator
ITA-SUOMEN YLIOPISTO 

Organization address
address: YLIOPISTONRANTA 1 E
city: KUOPIO
postcode: 70211
website: www.uef.fi

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 179˙325 €
 EC max contribution 179˙325 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2020-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ITA-SUOMEN YLIOPISTO FI (KUOPIO) coordinator 179˙325.00

Map

 Project objective

Plants have evolved an impressive defense system to combat herbivores. These defenses include morphological structures like spines and secondary metabolites that have toxic, repellent, or antinutritional effects on consumers. Many plant defenses are constitutively expressed, but some are induced in response to herbivore damage. Damaged plants emit volatile organic compounds (VOCs) into the environment that may induce defenses in adjacent, undamaged tissue or may be eavesdropped by neighboring plants, enabling them to prime their own resistance response prior to attack. While once controversial, this plant-plant communication resulting in a VOC-induced phenotypic response that reduces damage from attacking herbivores has been demonstrated in over 50 species. Recently, researchers have found distinguishing VOC blends among sagebrush (Artemisia tridentata) referred to as chemotypes. Field experiments demonstrated that communication between A. tridentata plants of the same chemotype resulted in less damage by herbivores compared to that between plants of different chemotypes. Chemotypes were also found to be highly heritable. This is consistent with the hypothesis that volatile communication evolved as a within-plant warning mechanism due to limited vascular signaling. Because emitted volatile cues become available to potential competitors of the same or different species, selection for cues that are more private would likely be of greater benefit to the emitter. At the time of this study, only 2 A. tridentata chemotypes had been identified. More recent work has found an additional 6 chemotypes. Here we propose to rigorously test the ecological consequences of chemotypic variation and the processes that maintain it. Through synergistic efforts combining my expertise in field ecology and plant-insect interactions and that of the host and collaborators in ecological chemistry and molecular biology, we will forward the field of volatile-mediated plant-plant interactions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CVVOC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CVVOC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

Cartesian Networks (2020)

Cartesian Networks in Early Modern Europe: A Quantitative and Interdisciplinary Approach

Read More