Opendata, web and dolomites

SensifAI SIGNED

Understanding Videos Automatically with the SensifAI Deep Learning Technology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SensifAI project word cloud

Explore the words cloud of the SensifAI project. It provides you a very rough idea of what is the project "SensifAI" about.

limited    accumulative    leuven    follow    landmark    scientists    accurately    mit    sport    equipped    europeans    05    landmarks    wearable    visually    recognize    pricing    contextual    alumni    unsafe    emerge    cutting    logos    data    ku    searchable    extremely    recognition    recognizes    imagine    automated    internet    google    aurally    impaired    millions    people    videos    minute    became    captured    music    microphone    scene    actions    automatically    web    ranging    million    contents    eth    surrounding    model    visual    images    01    sensifai    managed    119    video    believe    moods    day    tags    trained    objects    description    traffic    customized    zurich    semantic    audio    cloud    helping    recognizing    deep    services    content    learning    80    imaging    action    manually    speech    edge    international    trillion    oem    mobile    similarly    celebrities    audios    smartphones    delivers    scenes    describing    tagging    bvba    emotion       involvement    texts    genre    founded    amazon    environment    tag    camera    software    starting    acquired    marketplace   

Project "SensifAI" data sheet

The following table provides information about the project.

Coordinator
SENSIFAI 

Organization address
address: DREVE DE NIVELLES 182/9
city: BRUSSELS
postcode: 1160
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Project website https://sensifai.com/
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2019-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SENSIFAI BE (BRUSSELS) coordinator 50˙000.00

Map

 Project objective

Google has a value of $1 trillion because it has managed to make texts searchable. However, 80% of internet traffic is videos, audios and images and they are not searchable. Making videos searchable is extremely challenging. This is why most of the video tagging is done manually and the results in automated video recognition are still limited. Mobile video recognition is also starting to emerge. SensifAI has developed a cutting-edge audio-visual deep-learning technology trained on millions of videos to recognize audio and video content and to tag them accurately. SensifAI automatically tags videos, images and audio, which makes them searchable and can be customized for a range of use cases. We believe our approach to contextual video analysis is unique and on the leading edge as it recognizes, scenes, actions, celebrities, landmarks, logos, music genre, moods and emotion and speech. SensifAI delivers the video recognition technology on the cloud on the Amazon Web Services Marketplace and can be embedded on devices such as smartphones (by OEM’s). Our software just became available on the Amazon Web Services Marketplace where we follow a unit-based pricing model ranging from €0.01/minute for recognizing landmark images/objects/celebrities/unsafe contents to €0.05/minute for general tagging and action/sport recognition. SensifAI bvba was founded by three alumni and scientists from MIT, ETH Zurich and KU Leuven, who acquired an accumulative experience in audio-visual data processing through involvement in many international projects. Imagine a day when the 30 million visually impaired Europeans use a wearable camera equipped with a software describing them the surrounding environment automatically by recognizing the semantic concept of the captured video. includes the description of the scene, objects, and activities. Similarly, imaging a technology when the 119 million aurally impaired people use a wearable microphone equipped with a software helping them.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SENSIFAI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SENSIFAI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DNA DS (2019)

DNA Data storage

Read More  

Keelcrab (2019)

Keelcrab the Drone for an automated hull cleaning: fast & essential

Read More  

DeltaQon (2019)

IOT and cloud computing for online medical analysis service platform

Read More