Opendata, web and dolomites

ONCOFUM SIGNED

Integrating the tissue-specificity and chronology of hereditary renal cancer predisposition

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ONCOFUM project word cloud

Explore the words cloud of the ONCOFUM project. It provides you a very rough idea of what is the project "ONCOFUM" about.

phenotypic    tissues    permissive    appropriate    ensuing    give    initially    fh    anticancer    hypothesise    mutated    deficiency    dysregulated    copy    mitochondria    metabolic    carriers    diagnostic    model    die    perform    multiple    fumarate    unclear    mechanisms    skin    uterus    little    profound    tissue    survive    accumulation    predispose    inherit    underpin    contributes    enzymes    tricarboxylic    wt    cellular    vivo    cells    tumours    acid    molecular    cell    parallel    undergo    cancer    biochemical    occurs    hereditary    inactivate    cancers    oncofum    generally    reprogramming    wild    framework    validated    develops    unparalleled    mutation    insights    leads    mutations    prognostic    metabolism    tools    mouse    models    cycle    renal    leiomyomatosis    tca    strategies    allele    hlrcc    hardware    tumorigenesis    generate    elucidate    discovery    hydratase    therapeutic    amongst    characterised    vitro    drive    patients    hypothesis    gives    experimental   

Project "ONCOFUM" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙998˙698 €
 EC max contribution 1˙998˙698 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙998˙698.00

Map

 Project objective

Cancer cells undergo profound metabolic changes. However, little is known about whether and how metabolic changes drive cancer. The discovery that mutations of Tricarboxylic Acid (TCA) cycle enzymes in mitochondria predispose to cancer gives evidence that dysregulated metabolism could drive tumorigenesis. Amongst these, mutations in Fumarate Hydratase (FH) cause Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC), characterised by tumours of the skin and uterus, and renal cancer. Patients inherit one mutated copy of FH and loss of the wild-type (wt) allele occurs in tumours. Fumarate accumulation is the defining biochemical feature of these tumours. However, the mechanisms by which FH loss and fumarate accumulation lead to these tumours is unclear. In ONCOFUM, I want to elucidate the mechanisms that underpin tissue-specific tumorigenesis in HLRCC. I hypothesise that HLRCC occurs via a two-step process. Initially, loss of the wt allele in carriers of a FH mutation leads to FH deficiency. However, most of these cells die and only cells in tissues with the appropriate metabolic hardware survive. In the second step, FH loss in permissive tissues leads to phenotypic changes that lead to cancer. To assess this hypothesis, we will generate a mouse model where we inactivate FH in multiple tissues and elucidate the ensuing tissue-specific reprogramming. Then, using cellular models, we will investigate the molecular consequences of FH loss. In parallel, we will perform a comprehensive analysis of HLRCC tumours to find diagnostic and prognostic tools, and new anticancer targets, which will be validated in vitro and in vivo. The experimental framework developed in ONCOFUM will give unparalleled molecular insights into how cancer develops in different tissues in response to loss of FH and will lead to new therapeutic strategies for HLRCC, and, more generally for the many other cancers to which metabolic reprogramming contributes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ONCOFUM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ONCOFUM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Neuro-UTR (2019)

Mechanism and functional impact of ultra-long 3’ UTRs in the Drosophila nervous system

Read More  

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More  

ChronicPain (2019)

New Target and Drug Candidates for Alleviating Chronic Pain

Read More