Opendata, web and dolomites

CapBed SIGNED

Engineered Capillary Beds for Successful Prevascularization of Tissue Engineering Constructs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CapBed project word cloud

Explore the words cloud of the CapBed project. It provides you a very rough idea of what is the project "CapBed" about.

adipose    ing    cell    printing    proposing    prime    axis    micropatterned    matrix    time    strategy    millions    disruptive    death    vitro    correct    vastly    technologies    assure    vessels    irrigation    termed    functional    circulation    vascular    mimic    massive    inability    rendering    network    first    thousands    beds    angiogenic    demand    engineered    levels    none    fraction    virtually    body    suffering    fast    edge    reached    engineer    human    cells    cutting    perfusion    innovative    flow    tissues    elusive    donated    organs    simultaneously    solution    tools    techniques    stromal    dynamic    bed    collagen    structure    blood    transplantation    yielded    patient    economical    scientific    capillaries    outnumbers    integrate    capillary    anastomosed    prevascularize    laser    3d    hold    listed    engineering    fabricate    potential    photoablation    suitable    populations    tissue    sheets    people    fabrication    microfluidics    capbed    fluid    supply    irrigate    medical    suggests    intricate    survival    prevascularization   

Project "CapBed" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDADE DO MINHO 

Organization address
address: LARGO DO PACO
city: BRAGA
postcode: 4704 553
website: www.uminho.pt

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 1˙499˙940 €
 EC max contribution 1˙499˙940 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDADE DO MINHO PT (BRAGA) coordinator 1˙499˙940.00

Map

 Project objective

The demand for donated organs vastly outnumbers the supply, leading each year to the death of thousands of people and the suffering of millions more. Engineered tissues and organs following Tissue Engineering approaches are a possible solution to this problem. However, a prevascularization solution to irrigate complex engineered tissues and assure their survival after transplantation is currently elusive. In the human body, complex organs and tissues irrigation is achieved by a network of blood vessels termed capillary bed which suggests such a structure is needed in engineered tissues. Previous approaches to engineer capillary beds reached different levels of success but none yielded a fully functional one due to the inability in simultaneously addressing key elements such as correct angiogenic cell populations, a suitable matrix and dynamic conditions that mimic blood flow. CapBed aims at proposing a new technology to fabricate in vitro capillary beds that include a vascular axis that can be anastomosed with a patient circulation. Such capillary beds could be used as prime tools to prevascularize in vitro engineered tissues and provide fast perfusion of those after transplantation to a patient. Cutting edge techniques will be for the first time integrated in a disruptive approach to address the requirements listed above. Angiogenic cell sheets of human Adipose-derived Stromal Vascular fraction cells will provide the cell populations that integrate the capillaries and manage its intricate formation, as well as the collagen required to build the matrix that will hold the capillary beds. Innovative fabrication technologies such as 3D printing and laser photoablation will be used for the fabrication of the micropatterned matrix that will allow fluid flow through microfluidics. The resulting functional capillary beds can be used with virtually every tissue engineering strategy rendering the proposed strategy with massive economical, scientific and medical potential

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CAPBED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CAPBED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More