Opendata, web and dolomites

CapBed SIGNED

Engineered Capillary Beds for Successful Prevascularization of Tissue Engineering Constructs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CapBed project word cloud

Explore the words cloud of the CapBed project. It provides you a very rough idea of what is the project "CapBed" about.

simultaneously    populations    techniques    capillaries    elusive    inability    adipose    irrigation    demand    cells    yielded    patient    listed    vastly    body    angiogenic    vitro    printing    flow    photoablation    mimic    potential    structure    prevascularization    cell    matrix    edge    solution    thousands    time    levels    human    suffering    fast    ing    people    irrigate    outnumbers    prime    medical    scientific    millions    fabrication    organs    supply    collagen    tools    circulation    termed    axis    none    donated    engineering    death    capbed    suggests    network    correct    tissue    beds    dynamic    virtually    strategy    suitable    tissues    fluid    vessels    laser    cutting    microfluidics    fabricate    fraction    technologies    rendering    micropatterned    engineered    functional    hold    capillary    economical    bed    vascular    intricate    integrate    reached    3d    assure    anastomosed    first    innovative    stromal    survival    massive    blood    proposing    sheets    disruptive    transplantation    prevascularize    perfusion    engineer   

Project "CapBed" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDADE DO MINHO 

Organization address
address: LARGO DO PACO
city: BRAGA
postcode: 4704 553
website: www.uminho.pt

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 1˙499˙940 €
 EC max contribution 1˙499˙940 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDADE DO MINHO PT (BRAGA) coordinator 1˙499˙940.00

Map

 Project objective

The demand for donated organs vastly outnumbers the supply, leading each year to the death of thousands of people and the suffering of millions more. Engineered tissues and organs following Tissue Engineering approaches are a possible solution to this problem. However, a prevascularization solution to irrigate complex engineered tissues and assure their survival after transplantation is currently elusive. In the human body, complex organs and tissues irrigation is achieved by a network of blood vessels termed capillary bed which suggests such a structure is needed in engineered tissues. Previous approaches to engineer capillary beds reached different levels of success but none yielded a fully functional one due to the inability in simultaneously addressing key elements such as correct angiogenic cell populations, a suitable matrix and dynamic conditions that mimic blood flow. CapBed aims at proposing a new technology to fabricate in vitro capillary beds that include a vascular axis that can be anastomosed with a patient circulation. Such capillary beds could be used as prime tools to prevascularize in vitro engineered tissues and provide fast perfusion of those after transplantation to a patient. Cutting edge techniques will be for the first time integrated in a disruptive approach to address the requirements listed above. Angiogenic cell sheets of human Adipose-derived Stromal Vascular fraction cells will provide the cell populations that integrate the capillaries and manage its intricate formation, as well as the collagen required to build the matrix that will hold the capillary beds. Innovative fabrication technologies such as 3D printing and laser photoablation will be used for the fabrication of the micropatterned matrix that will allow fluid flow through microfluidics. The resulting functional capillary beds can be used with virtually every tissue engineering strategy rendering the proposed strategy with massive economical, scientific and medical potential

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CAPBED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CAPBED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SERENiTi (2018)

Software Enhanced Research iN Transient kinetics

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More