Opendata, web and dolomites

PERIF SIGNED

Perivascular cells at the crossroads of inflammation, regeneration and fibrosis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PERIF project word cloud

Explore the words cloud of the PERIF project. It provides you a very rough idea of what is the project "PERIF" about.

recovery    liver    dystrophies    functions    regulation    excessive    injured    wound    therapeutic    regeneration    activation    scarring    source    mechanisms    nearly    wraps    mesenchymal    questions    perivascular    tissue    chronic    scar    profibrotic    population    damaged    biological    scleroderma    notable    data    last    avenues    regulating    injury    diseases    heal    normal    area    function    roles    partial    usually    fight    life    survival    industrialized    tissues    collectively    inflammatory    necrotic    inappropriate    host    mediated    previously    cancer    drew    birth    world    vascular    fibrotic    contaminated    kidney    suggests    beneficial    repair    eliminate    neutralize    cells    stromal    discrete    harmful    mediators    functional    identification    medicine    organisms    intend    massive    relative    threatening    preventing    point    half    fibrosis    cardiovascular    transiently    protective    initially    blood    paving    team    settings    adult    invaders    vessels    generating    replaces    hindered    variously    organ    foreign    diversity    muscular    unexpected    immune    tumors    disease    fibrous    inflammation    pericytes    lung    mural    deaths    bowel    agent   

Project "PERIF" data sheet

The following table provides information about the project.

Coordinator
INSTITUT PASTEUR 

Organization address
address: RUE DU DOCTEUR ROUX 25-28
city: PARIS CEDEX 15
postcode: 75724
website: http://www.pasteur.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙976˙100 €
 EC max contribution 1˙976˙100 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme ERC-COG
 Starting year 2015
 Duration (year-month-day) from 2015-11-01   to  2021-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT PASTEUR FR (PARIS CEDEX 15) coordinator 1˙976˙100.00

Map

 Project objective

The survival of organisms requires the ability to repair tissues upon injury, as well as, after birth, to fight foreign invaders that may have contaminated the wound. This last function is mediated by a complex host response involving immune cells, blood vessels and inflammatory mediators that collectively intend to neutralize the harmful agent and eliminate damaged/necrotic tissue. Initially beneficial, this massive inflammatory response comes with a cost, and adult injured tissues usually heal with a scar, which is an area of fibrous tissue that transiently replaces normal tissue. In chronic settings, scarring can become excessive in a process called fibrosis, to the point of preventing functional recovery of the injured organ and be life threatening. Nearly half of all deaths in industrialized world are due to diseases involving inappropriate, often chronic, inflammatory and fibrotic responses, including lung, kidney and liver diseases, scleroderma, inflammatory bowel diseases, muscular dystrophies, cardiovascular diseases, and tumors. However our current knowledge of the biological processes regulating fibrosis is partial, which has hindered therapeutic advances in the field. Recent data from our team and others drew new attention on a discrete population of mesenchymal cells that wraps around vessels, variously called mural cells, perivascular cells or pericytes, as a major source for profibrotic stromal cells generating scar tissue. Previously known for their vascular protective functions, increasing evidence suggests new and unexpected roles for these cells also in inflammation, repair/regeneration, and cancer. These new findings raise a number of challenging questions relative to their functional diversity, as well as mechanisms of activation/ regulation in disease. The identification and specific targeting of functional subsets of mesenchymal perivascular cells may have notable impact in research and medicine, paving the way for new therapeutic avenues in inflammatory/fibrotic diseases and cancer.

 Publications

year authors and title journal last update
List of publications.
2018 Selene E. Di Carlo, Lucie Peduto
The perivascular origin of pathological fibroblasts
published pages: 54-63, ISSN: 0021-9738, DOI: 10.1172/JCI93558
Journal of Clinical Investigation 128/1 2019-07-25
2017 Igor Stzepourginski, Giulia Nigro, Jean-Marie Jacob, Sophie Dulauroy, Philippe J. Sansonetti, G?rard Eberl, Lucie Peduto
CD34 + mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury
published pages: E506-E513, ISSN: 0027-8424, DOI: 10.1073/pnas.1620059114
Proceedings of the National Academy of Sciences 114/4 2019-07-25

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PERIF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PERIF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More