Opendata, web and dolomites

DeFiNER SIGNED

Nucleotide Excision Repair: Decoding its Functional Role in Mammals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DeFiNER project word cloud

Explore the words cloud of the DeFiNER project. It provides you a very rough idea of what is the project "DeFiNER" about.

defect    mechanisms    poorly    expression    transcriptional    connected    series    severity    play    solid    excision    aging    random    reprogramming    nucleotide    hormones    decode    itself    protein    ner    complexes    genome    knock    progeny    dissecting    contributions    transcription    progression    repair    proteins    intact    pluripotent    dna    linked    cancer    faithfully    primarily    tightly    regard    mice    remodelling    clinical    fine    employ    exists    heterogeneity    mammals    maintenance    paramount    operate    paving    cells    developmental    unexplored    varying    mammalian    organization    functionally    transgenic    defects    dimensional    difficulties    vastly    regulation    disorders    networks    stem    tuning    chromatin    progeroid    prioritize    roles    diverse    vivo    execute    underlying    biological    besides    coordinate    function    explained    transmit    functional    disease    give    insufficiently    reveals    organism    gene    architecture   

Project "DeFiNER" data sheet

The following table provides information about the project.

Coordinator
IDRYMA TECHNOLOGIAS KAI EREVNAS 

Organization address
address: N PLASTIRA STR 100
city: IRAKLEIO
postcode: 70013
website: www.forth.gr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Greece [EL]
 Project website http://www.garinislab.gr
 Total cost 1˙995˙000 €
 EC max contribution 1˙995˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme ERC-COG
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IDRYMA TECHNOLOGIAS KAI EREVNAS EL (IRAKLEIO) coordinator 1˙995˙000.00

Map

 Project objective

Genome maintenance, chromatin remodelling and transcription are tightly linked biological processes that are currently poorly understood and vastly unexplored. Nucleotide excision repair (NER) is a major DNA repair pathway that mammalian cells employ to maintain their genome intact and faithfully transmit it into their progeny. Besides cancer and aging, however, defects in NER give rise to developmental disorders whose clinical heterogeneity and varying severity can only insufficiently be explained by the DNA repair defect. Recent work reveals that NER factors play a role, in addition to DNA repair, in transcription and the three-dimensional organization of our genome. Indeed, NER factors are now known to function in the regulation of gene expression, the transcriptional reprogramming of pluripotent stem cells and the fine-tuning of growth hormones during mammalian development. In this regard, the non-random organization of our genome, chromatin and the process of transcription itself are expected to play paramount roles in how NER factors coordinate, prioritize and execute their distinct tasks during development and disease progression. At present, however, no solid evidence exists as to how NER is functionally involved in such complex processes, what are the NER-associated protein complexes and underlying gene networks or how NER factors operate within the complex chromatin architecture. This is primarily due to our difficulties in dissecting the diverse functional contributions of NER proteins in an intact organism. Here, we propose to use a unique series of knock-in, transgenic and NER progeroid mice to decode the functional role of NER in mammals, thus paving the way for understanding how genome maintenance pathways are connected to developmental defects and disease mechanisms in vivo.

 Publications

year authors and title journal last update
List of publications.
2017 Kalliopi Stratigi, Ourania Chatzidoukaki, George A. Garinis
DNA damage-induced inflammation and nuclear architecture
published pages: 17-26, ISSN: 0047-6374, DOI: 10.1016/j.mad.2016.09.008
Mechanisms of Ageing and Development 165 2020-03-17
2017 Georgia Chatzinikolaou, Zivkos Apostolou, Tamara Aid-Pavlidis, Anna Ioannidou, Ismene Karakasilioti, Giorgio L. Papadopoulos, Michalis Aivaliotis, Maria Tsekrekou, John Strouboulis, Theodore Kosteas, George A. Garinis
ERCC1–XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes
published pages: 421-432, ISSN: 1465-7392, DOI: 10.1038/ncb3499
Nature Cell Biology 19/5 2020-03-17
2016 Anna Ioannidou, Evi Goulielmaki, George A. Garinis
DNA Damage: From Chronic Inflammation to Age-Related Deterioration
published pages: , ISSN: 1664-8021, DOI: 10.3389/fgene.2016.00187
Frontiers in Genetics 7 2020-03-17

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEFINER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEFINER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More