Opendata, web and dolomites

FPGA Accelerators SIGNED

Energy Efficient FPGA Accelerators for Graph Analytics Applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FPGA Accelerators project word cloud

Explore the words cloud of the FPGA Accelerators project. It provides you a very rough idea of what is the project "FPGA Accelerators" about.

abstract    graph    upcoming    interface    parallel    specialized    domain    idea    parallelization    center    adoption    percent    significantly    processed    template    cloud    solutions    designers    electricity    edge    automatically    utilize    describe    lower    perform    basic    implementations    analytics    avoidance    spread    customizable    efficiency    race    cpus    prominent    discovery    deadlock    customization    companies    machine    expert    consume    shown    substantially    reported    optimization    processors    centers    fgpas    arrays    it    integrate    pipelining    descriptions    learning    computation    synchronization    medium    gate    programmable    global    energy    bridge    fpga    performance    manufacturing    consumption    details    fpgas    amount    serial    purpose    vertex    massively    memory    costly    simulations    software    months    small    time    hardware    investing    programming    gap    barrier    maps    improvements    data    hide    functions    unaffordable    logic    demonstrated    preliminary    architecture   

Project "FPGA Accelerators" data sheet

The following table provides information about the project.

Coordinator
BILKENT UNIVERSITESI VAKIF 

Organization address
address: ESKISEHIR YOLU 8 KM
city: BILKENT ANKARA
postcode: 6800
website: www.bilkent.edu.tr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Turkey [TR]
 Project website http://www.cs.bilkent.edu.tr/
 Total cost 145˙845 €
 EC max contribution 145˙845 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BILKENT UNIVERSITESI VAKIF TR (BILKENT ANKARA) coordinator 145˙845.00

Map

 Project objective

It is reported that data centers today consume up to 3 percent of the global electricity usage. This is expected to increase in the upcoming years as the amount of data processed in the cloud increases substantially. An effective way for data centers to achieve better performance and energy efficiency is to perform computation on specialized processing elements. Field programmable gate arrays (FPGAs) enable customization of logic after manufacturing to achieve better energy efficiency compared to general purpose processors. Today, prominent hardware and software companies are investing in data center solutions that integrate FPGAs with CPUs, and significant energy consumption and performance improvements have been demonstrated for several data center applications. However, the main barrier for wide spread adoption of FGPAs in data centers is the cost of programming, which typically requires months of development time by hardware designers. This makes it unaffordable for small-to-medium software companies to effectively utilize the available FPGAs. The purpose of this project is to lower this barrier for emerging graph analytics applications for knowledge discovery and machine learning. The basic idea is to use an abstract interface that allows a domain expert to describe an application as a set of serial functions defined per vertex and/or edge. We propose a customizable implementation template that automatically maps the abstract user functions to massively parallel FPGA implementations. The proposed template will hide from users many low level implementation details such as parallelization, pipelining, synchronization, memory access optimization, race and deadlock avoidance, etc. This will help bridge the gap between high level application descriptions and costly hardware implementations. Our preliminary architecture simulations have shown that the proposed graph processors can achieve significantly better energy efficiency than general purpose processors.

 Publications

year authors and title journal last update
List of publications.
2018 Muhammet Mustafa Ozdal
Emerging Accelerator Platforms for Data Centers
published pages: 47-54, ISSN: 2168-2356, DOI: 10.1109/mdat.2017.2779742
IEEE Design & Test 35/1 2019-06-13
2018 Andrey Ayupov, Serif Yesil, Muhammet Mustafa Ozdal, Taemin Kim, Steven Burns, Ozcan Ozturk
A Template-Based Design Methodology for Graph-Parallel Hardware Accelerators
published pages: 420-430, ISSN: 0278-0070, DOI: 10.1109/tcad.2017.2706562
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37/2 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FPGA ACCELERATORS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FPGA ACCELERATORS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

PaSION (2018)

A longitudinal assessment of treatment experience, symptoms and potential associations with biomarkers in cancer patients undergoing immune checkpoint inhibitor therapy

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More