Opendata, web and dolomites

FPGA Accelerators SIGNED

Energy Efficient FPGA Accelerators for Graph Analytics Applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FPGA Accelerators project word cloud

Explore the words cloud of the FPGA Accelerators project. It provides you a very rough idea of what is the project "FPGA Accelerators" about.

domain    center    customizable    software    arrays    processors    deadlock    percent    barrier    manufacturing    data    serial    idea    discovery    integrate    utilize    programmable    efficiency    spread    cloud    interface    simulations    centers    parallel    optimization    parallelization    fpgas    gap    hardware    improvements    perform    months    adoption    learning    avoidance    gate    small    functions    synchronization    cpus    computation    race    electricity    global    reported    pipelining    prominent    medium    specialized    companies    analytics    programming    descriptions    significantly    unaffordable    amount    consumption    substantially    details    describe    upcoming    processed    memory    fgpas    basic    maps    graph    architecture    edge    energy    implementations    bridge    costly    expert    consume    fpga    hide    purpose    preliminary    time    investing    customization    template    machine    logic    performance    demonstrated    shown    automatically    abstract    solutions    designers    it    massively    lower    vertex   

Project "FPGA Accelerators" data sheet

The following table provides information about the project.

Coordinator
BILKENT UNIVERSITESI VAKIF 

Organization address
address: ESKISEHIR YOLU 8 KM
city: BILKENT ANKARA
postcode: 6800
website: www.bilkent.edu.tr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Turkey [TR]
 Project website http://www.cs.bilkent.edu.tr/
 Total cost 145˙845 €
 EC max contribution 145˙845 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BILKENT UNIVERSITESI VAKIF TR (BILKENT ANKARA) coordinator 145˙845.00

Map

 Project objective

It is reported that data centers today consume up to 3 percent of the global electricity usage. This is expected to increase in the upcoming years as the amount of data processed in the cloud increases substantially. An effective way for data centers to achieve better performance and energy efficiency is to perform computation on specialized processing elements. Field programmable gate arrays (FPGAs) enable customization of logic after manufacturing to achieve better energy efficiency compared to general purpose processors. Today, prominent hardware and software companies are investing in data center solutions that integrate FPGAs with CPUs, and significant energy consumption and performance improvements have been demonstrated for several data center applications. However, the main barrier for wide spread adoption of FGPAs in data centers is the cost of programming, which typically requires months of development time by hardware designers. This makes it unaffordable for small-to-medium software companies to effectively utilize the available FPGAs. The purpose of this project is to lower this barrier for emerging graph analytics applications for knowledge discovery and machine learning. The basic idea is to use an abstract interface that allows a domain expert to describe an application as a set of serial functions defined per vertex and/or edge. We propose a customizable implementation template that automatically maps the abstract user functions to massively parallel FPGA implementations. The proposed template will hide from users many low level implementation details such as parallelization, pipelining, synchronization, memory access optimization, race and deadlock avoidance, etc. This will help bridge the gap between high level application descriptions and costly hardware implementations. Our preliminary architecture simulations have shown that the proposed graph processors can achieve significantly better energy efficiency than general purpose processors.

 Publications

year authors and title journal last update
List of publications.
2018 Muhammet Mustafa Ozdal
Emerging Accelerator Platforms for Data Centers
published pages: 47-54, ISSN: 2168-2356, DOI: 10.1109/mdat.2017.2779742
IEEE Design & Test 35/1 2019-06-13
2018 Andrey Ayupov, Serif Yesil, Muhammet Mustafa Ozdal, Taemin Kim, Steven Burns, Ozcan Ozturk
A Template-Based Design Methodology for Graph-Parallel Hardware Accelerators
published pages: 420-430, ISSN: 0278-0070, DOI: 10.1109/tcad.2017.2706562
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37/2 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FPGA ACCELERATORS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FPGA ACCELERATORS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More