Opendata, web and dolomites

ENVERESP SIGNED

Crosstalk between nuclear envelope and DNA Damage Response: Role of nucleoporin TPR in the maintenance of genomic integrity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ENVERESP project word cloud

Explore the words cloud of the ENVERESP project. It provides you a very rough idea of what is the project "ENVERESP" about.

proteomic    expression    posed    genetics    genes    cancer8    promoter    proteins    cells    types    receives    prevents    checkpoint    mutagenesis    significantly    domains    microscopy    threats    mechanism    damaged    oncogenes    treatments    terminal    damage    linked    tumor    fused    oncogenesis    genesis    proteomics    pediatric    kinases    biological    signaling    interestingly    raf    stability    progression    mutation    therapies    genome    pore    region    kinase    day    amplification    cancer    nuclear    maintenance    network    envelope    counteract    signal    repair    profiling    serves    principles    molecular    employing    dna    tumors    breast    vitro    survival    human    thousands    met    proto    patients    responsive    genomics    development2    optimize    each    atm    nucleoporin    deregulated    imaging    binding    silac    ing    replication    extensive    barrier    body    tpr    domain    previously    shorter    liver    lesions    chromatin    translocated    phosphorylated    critical    ddr    detect    mechanistic    atr    networks    protein    their    ependymomas9    solid    condensation    found    intracranial    technologies    cell    leads    electron   

Project "ENVERESP" data sheet

The following table provides information about the project.

Coordinator
IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE 

Organization address
address: VIA ADAMELLO 16
city: MILANO
postcode: 20139
website: www.ifom-firc.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 168˙277 €
 EC max contribution 168˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE IT (MILANO) coordinator 168˙277.00

Map

 Project objective

Each cell in the human body receives thousands of DNA lesions per day. To counteract threats posed by DNA damage, cells have evolved an integrated signaling network called the DNA-damage response (DDR). This mechanism allows cells to detect DNA lesions, signal their presence and promote their repair. Mutation of DDR genes, which serves as a biological barrier against tumor progression, leads to cancer development2. A large-scale proteomic analysis of proteins phosphorylated in response to DNA damage by checkpoint kinases ATM and ATR identified extensive protein networks responsive to DNA damage. Interestingly, among the proteins identified to be phosphorylated upon DNA damage were several nuclear pore complex factors including nucleoporin Translocated Promoter Region (TPR)5. TPR was previously linked to cancer since its N-terminal domain has been found fused with the protein kinase domains of various proto-oncogenes such as RAF and MET resulting in human solid tumors. TPR expression level was found deregulated in many types of human tumors such as breast and liver cancer8. Amplification of TPR was also significantly associated with a shorter survival of patients with pediatric intracranial ependymomas9. All these findings support a critical role for TPR in the mechanism of oncogenesis. By employing state-of-the-art proteomics (SILAC), genetics (in vitro mutagenesis), genomics (DNA binding profiling) and imaging (electron microscopy) technologies we will investigate how TPR prevents tumor genesis via its role in the DDR network coordinating DNA repair, DNA replication and chromatin condensation with the nuclear envelope upon DNA damage. Providing mechanistic insight into the role of TPR in DDR and the maintenance of genome stability will not only contribute to our understanding of molecular principles of response to damaged DNA, but will allow us to optimize existing cancer treatments and design new molecular targeted therapies in the future.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ENVERESP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ENVERESP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LICONAMCO (2019)

Light-controlled nanomagnetic computation schemes

Read More  

CO2RR VALCAT (2019)

Valence Band Tuning of Electrocatalysts for the CO2 Reduction Reaction

Read More  

FictDial (2020)

What do we learn from dialogues in fiction?

Read More