Opendata, web and dolomites

ENVERESP SIGNED

Crosstalk between nuclear envelope and DNA Damage Response: Role of nucleoporin TPR in the maintenance of genomic integrity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ENVERESP project word cloud

Explore the words cloud of the ENVERESP project. It provides you a very rough idea of what is the project "ENVERESP" about.

protein    day    signaling    mechanistic    survival    threats    cells    imaging    stability    electron    translocated    previously    checkpoint    cancer    genesis    each    proto    receives    amplification    body    profiling    phosphorylated    cell    tumor    promoter    repair    technologies    oncogenes    progression    found    ddr    barrier    posed    human    terminal    breast    genomics    raf    biological    intracranial    treatments    kinase    serves    microscopy    thousands    domains    ing    linked    tpr    expression    pediatric    mutagenesis    principles    silac    genome    proteomic    shorter    detect    condensation    mutation    fused    proteomics    domain    binding    nucleoporin    replication    critical    atm    atr    prevents    kinases    maintenance    proteins    responsive    molecular    significantly    region    chromatin    dna    leads    development2    extensive    oncogenesis    pore    genes    signal    ependymomas9    counteract    networks    network    nuclear    therapies    damage    vitro    tumors    mechanism    solid    interestingly    optimize    damaged    genetics    lesions    types    met    their    envelope    patients    cancer8    deregulated    employing    liver   

Project "ENVERESP" data sheet

The following table provides information about the project.

Coordinator
IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE 

Organization address
address: VIA ADAMELLO 16
city: MILANO
postcode: 20139
website: www.ifom-firc.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 168˙277 €
 EC max contribution 168˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE IT (MILANO) coordinator 168˙277.00

Map

 Project objective

Each cell in the human body receives thousands of DNA lesions per day. To counteract threats posed by DNA damage, cells have evolved an integrated signaling network called the DNA-damage response (DDR). This mechanism allows cells to detect DNA lesions, signal their presence and promote their repair. Mutation of DDR genes, which serves as a biological barrier against tumor progression, leads to cancer development2. A large-scale proteomic analysis of proteins phosphorylated in response to DNA damage by checkpoint kinases ATM and ATR identified extensive protein networks responsive to DNA damage. Interestingly, among the proteins identified to be phosphorylated upon DNA damage were several nuclear pore complex factors including nucleoporin Translocated Promoter Region (TPR)5. TPR was previously linked to cancer since its N-terminal domain has been found fused with the protein kinase domains of various proto-oncogenes such as RAF and MET resulting in human solid tumors. TPR expression level was found deregulated in many types of human tumors such as breast and liver cancer8. Amplification of TPR was also significantly associated with a shorter survival of patients with pediatric intracranial ependymomas9. All these findings support a critical role for TPR in the mechanism of oncogenesis. By employing state-of-the-art proteomics (SILAC), genetics (in vitro mutagenesis), genomics (DNA binding profiling) and imaging (electron microscopy) technologies we will investigate how TPR prevents tumor genesis via its role in the DDR network coordinating DNA repair, DNA replication and chromatin condensation with the nuclear envelope upon DNA damage. Providing mechanistic insight into the role of TPR in DDR and the maintenance of genome stability will not only contribute to our understanding of molecular principles of response to damaged DNA, but will allow us to optimize existing cancer treatments and design new molecular targeted therapies in the future.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ENVERESP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ENVERESP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MS (2020)

Unravelling the molecular and cellular mechanism of metastasis

Read More  

WomInPubS (2019)

The modes and outcomes of interaction of (im) mobile Kurdish women with public space: a cross-cultural comparative study of different urban contexts

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More