Opendata, web and dolomites

In-K Strain System

In-K Strain System: Carbon Nanotube ink based realization of ultraflexible composite strain sensors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 In-K Strain System project word cloud

Explore the words cloud of the In-K Strain System project. It provides you a very rough idea of what is the project "In-K Strain System" about.

patent    sensor    time    risk    materials    technological    inks    printed    comprising    multiple    science    feasibility    size    material    answers    analysis    reduce    innovative    shortening    printing    almost    derive    financial    printers    advantages    discovery    heart    industrial    ink    upscaling    exceptional    despite    physical    strength    sensing    arrange    nanotube    cnt    monitoring    extended    deepening    employment    sensible    since    realized    extreme    repeatability    created    company    composite    electronic    competitive    industry    desktop    pct    surface    tri    acclaimed    lower    nanotubes    carbon    generation    walled    perfect    electrical    formulation    proven    raw    manipulate    elastic    bi    plan    easily    sensibly    structural    dispersed    strain    difficult    integrity    patterns    commercial    framework    economic    inkjet    found    realization    advantage    flexibility    business    conductive    axial    water   

Project "In-K Strain System" data sheet

The following table provides information about the project.

Coordinator
INSENSUS PROJECT SOCIETA A RESPONSABILITA LIMITATA SEMPLIFICATA 

Organization address
address: CORSO GIACOMO MATTEOTTI 36
city: TORINO TO
postcode: 10121
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website http://www.in-sensus.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.2.1.5. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing)
2. H2020-EU.2.1.3. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials)
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
4. H2020-EU.2.1.2. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2016
 Duration (year-month-day) from 2016-07-01   to  2016-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSENSUS PROJECT SOCIETA A RESPONSABILITA LIMITATA SEMPLIFICATA IT (TORINO TO) coordinator 50˙000.00

Map

 Project objective

Since their discovery, carbon nanotubes are one of the most acclaimed materials in both science and industry. But despite all their useful electrical properties, as well as their flexibility and strength, carbon nanotubes have proven very difficult to manipulate and arrange into patterns and so to be used in industrial applications. Carbon nanotube ink was one of the great answers found by researchers: they dispersed multi-walled carbon nanotubes in water creating ink to be used through commercial desktop inkjet printers. The so created conductive inks have unique physical and electronic properties: In our In-K Strain System we make use of these exceptional properties for strain sensing. The In-K Strain Sensor is a next generation strain sensor, realized in carbon nanotubes and elastic composite material. It can be easily applied to almost any surface. The In-K Strain Sensor is the heart of the In-K Strain System, an innovative Sensor System able to reduce sensibly the cost of Structural Integrity Monitoring. The advantages of using printed carbon nanotube ink in the sensor realization are multiple: lower production and raw material cost, sensible shortening of sensor production time, perfect repeatability, extreme flexibility in sensor size, easy printing of bi- and tri-axial sensor elements. The results of our research and development were so promising to lead to a dedicated patent application, PCT extended. We expect an important competitive advantage for our Company to derive from the employment of carbon nanotube ink. Economic feasibility assessment and production upscaling are the main objectives of this study: - Deepening of production related aspects including cnt ink formulation - Development of an operational framework including development of further technological and commercial partnerships - Development of a detailed business plan, comprising risk assessment and financial need analysis

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IN-K STRAIN SYSTEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IN-K STRAIN SYSTEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.5.;H2020-EU.2.1.3.;H2020-EU.2.3.1.;H2020-EU.2.1.2.)

CGM (2018)

A next generation nano media tailored to capture and recycle hazardous micropollutants in contaminated industrial wastewater.

Read More  

STAR (2018)

Safe, Transparent, Active and Reliable mineral sunscreen technology

Read More  

SUPPLEPRINT (2018)

Super Productive Line Printing Inkjet

Read More