Opendata, web and dolomites

CHEPHYTSSU

Structural Engineering of 2D Atomic Planes towards Task-Specific, Freestanding Superstructures through Combined Physical-Chemical Pathway

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CHEPHYTSSU project word cloud

Explore the words cloud of the CHEPHYTSSU project. It provides you a very rough idea of what is the project "CHEPHYTSSU" about.

functionalities    stability    chemical    discovery    superstructures    engineering    hydrophilic    surface    nitride    relationship    photovoltatic    outer    separation    oxide    oriented    technological    physically    flexibility    graphene    hexagonal    supercapacitor    designed    novoselov    manner    placing    researches    2004    library    environmental    structural    engineer    boomed    functionalized    interface    fundamentally    layers    create    sequence    materials    electrode    amphiphilic    hybrid    scalable    derivatives    metal    bonded    gas    conversion    blank    chemistry    steady    crystals    oxides    amphiphilicity    tailoring    sustainable    nanoparticles    hydrophobic    flexible    inner    capture    phililc    decade    mechanical    individual    atomic    endows    freestanding    energy    shape    performance    urgent    co2    storage    boron    physical    purification    structure    water    units    material    ordered    superstructure    combined    mechanically    layer    selective    consideration    2d    nanomaterials    unraveled    planes    geim    conductive    mesopores    chalcogenides    confined    professors   

Project "CHEPHYTSSU" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.graphene.manchester.ac.uk/about/ngi/
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-07-25   to  2018-07-24

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 195˙454.00

Map

 Project objective

The research on 2D nanomaterials has boomed since the discovery of graphene by professors Geim and Novoselov in 2004. After a decade of steady development, the available library of 2D crystals is highly rich including graphene derivatives, hexagonal boron nitride, many chalcogenides and various oxides. However, the technological advances and urgent environmental and sustainable energy issues such as CO2 capture and separation, energy storage and conversion (photovoltatic system, supercapacitor etc) call for advanced materials with not only properties of individual layers but also new functionalities. Particularly, researches on superstructures with unique properties such as amphiphilicity still remain blank. Physically, it is now possible to create such hybrid superstructures by placing different 2D crystals on top of each other in a designed sequence; while engineering the 2D units through a chemical way endows a high flexibility in surface chemistry tailoring and increase the mechanical stability due to the strongly bonded interface. Taking these into consideration, here we propose a combined chemical-physical pathway to engineer task-specific, mechanically freestanding superstructures based on 2D atomic planes in a simple and scalable manner. Three new material concepts are proposed including amphiphilic superstructure (hydrophilic outer layer and hydrophobic inner layer), gas selective superstructure (CO2-phililc outer layer and gas shape selective inner layer) and flexible superstructure with outer layer functionalized with metal oxide nanoparticles confined in ordered mesopores and inner conductive graphene. The obtained superstructures with these structural features will be oriented environmental and sustainable energy issues such as CO2 capture and separation, water purification and flexible electrode. Finally, structure-performance relationship will be unraveled fundamentally.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHEPHYTSSU" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHEPHYTSSU" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

AsymmFlow (2020)

Go with the continuous flow: Asymmetric Synthesis of Bioactive Alkaloids by Multistep Continuous-Flow Processes

Read More  

NarrowbandSSL (2019)

Development of Narrow Band Blue and Red Emitting Macromolecules for Solution-Processed Solid State Lighting Devices

Read More