Opendata, web and dolomites


Composition and Mechanism of the DNA-uptake Pilus of Vibrio cholerae

Total Cost €


EC-Contrib. €






 CMDNAUP project word cloud

Explore the words cloud of the CMDNAUP project. It provides you a very rough idea of what is the project "CMDNAUP" about.

polymeric    assembly    bacterium    almost    bacteria    lab    blokesch    mechanisms    environment    visualise    forms    elucidate    subtilis    conserved    motility    pathogen    machinery    mainly    outer    virulence    pili    hgt    proteins    human    attachment    chitinous    bacillus    zooplankton    pioneered    competence    models    epfl    pandemic    antibiotic    notably    follow    training    implying    maximum    free    genes    innovative    works    nanomachine    visualised    spread    dna    aquatic    transfer    answer    pathogens    natural    play    purified    horizontal    rapid    initiates    question    bacterial    resistance    membrane    disease    evolution    actually    underlying    surface    cell    sophisticated    gene    prospective    minimal    causes    biological    determined    roles    components    encoding    positive    naturally    infrastructures    genetic    form    cholerae    had    ubiquitous    mechanism    chance    action    fellow    nothing    competent    extensions    failed    combine    cholera    tfp    pilus    exoskeletons    negative    composition    molecular    functions    mode    gram    vibrio   

Project "CMDNAUP" data sheet

The following table provides information about the project.


Organization address
address: BATIMENT CE 3316 STATION 1
postcode: 1015

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website
 Total cost 175˙419 €
 EC max contribution 175˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Horizontal gene transfer (HGT) allows rapid bacterial evolution including the spread of genes encoding antibiotic resistance and virulence factors. The Gram-negative bacterium Vibrio cholerae is an important human pathogen that causes the pandemic disease Cholera. In its natural aquatic environment growth on the chitinous exoskeletons of zooplankton initiates the development of ‘Natural Competence’, a widespread and key form of HGT that allows bacteria to take up free DNA from the environment. DNA uptake involves a sophisticated nanomachine known as a Type IV Pilus (TFP), which forms polymeric extensions from the cell surface, are ubiquitous throughout bacteria and play a wide range of other roles such as surface motility and attachment. Notably, this machinery is conserved in other naturally competent bacteria including in several important human pathogens, implying a common mode of action. Work on this machinery has mainly been done in Gram-positive models like Bacillus subtilis but had failed to visualise an uptake pilus. Recently, the Blokesch lab visualised a DNA uptake pilus extending from the outer membrane of V. cholerae and determined the minimal known components needed for its assembly. However, we still know almost nothing about how this machinery actually works to bring DNA into the cell. To answer this important question and elucidate the underlying molecular mechanisms we will follow two main objectives. 1. We will determine the composition of purified DNA-uptake pili and investigate the functions of the identified proteins. 2. We will combine innovative genetic and cell-biological approaches to investigate the mechanism of DNA uptake. The Blokesch lab at EPFL has pioneered genetic and cell biological methods for studying competence in V. cholerae and has state-of-the-art equipment and infrastructures that offer the prospective fellow the maximum chance of success and the best-possible training through the research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CMDNAUP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CMDNAUP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NeuroSens (2019)

Neuromodulation of Sensory Processing

Read More  

NPsVLCD (2019)

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Read More  

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More