Opendata, web and dolomites

UNEARTH SIGNED

Uranium isotope fractionation: a novel biosignature to identify microbial metabolism on early Earth

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "UNEARTH" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Organization address
address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015
website: www.epfl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙998˙971 €
 EC max contribution 1˙998˙971 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) coordinator 1˙998˙971.00

Map

 Project objective

Prokaryotes (archaea and bacteria) are the most abundant form of life both at present and throughout paleohistory and exhibit exquisite metabolic diversity, unmatched by eukaryotes. On early Earth, the absence of atmospheric oxygen led to the emergence of anaerobic microbial metabolisms such as methanogenesis, sulfate reduction, iron reduction, and denitrification. Non-isotope and isotope tools used to study ancient microbial life have provided evidence for each of these types of metabolisms in the rock record. However, there remains much uncertainty and debate regarding this evidence, primarily because of confounding effects of abiotic processes, and ambiguity in interpretation of isotopic signatures. This proposal aims to develop a robust biosignature for microbially mediated reduction reactions, that, in conjunction with existing tools, provides insight into ancient microbial activity in the rock record and establishes temporal constraints on the emergence of specific metabolic groups. To this end, I propose to use uranium (U) as an isotopic biosignature for microbial life. This pursuit is driven by recent work in my laboratory that has revealed a readily resolved difference between the isotopic signatures of enzymatically reduced uranium and abiotically reduced uranium. Combined with the ability of most microbial metabolic groups to catalyze U reduction, this finding raises the tantalizing possibility that uranium isotopic fractionation could serve as a biosignature for specific metabolic groups in the rock record. The establishment of a robust, bulk universal isotopic biosignature would be valuable to paleontologists, astrobiologists, and geologists because it would provide direct insight into the timing of emergence of specific metabolisms in ancient sedimentary environments on Earth.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UNEARTH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UNEARTH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

CARBOFLOW (2020)

Streamlined carbon dioxide conversion in ionic liquids – a platform strategy for modern carbonylation chemistry

Read More  

NEUROPRECISE (2019)

Precision medicine in traumatic brain injury using individual neurosteroid response

Read More