Opendata, web and dolomites

GrapheneBiosensor SIGNED

Electrochemical Graphene Sensors as Early Alert Tools for Algal Toxin Detection in Water

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GrapheneBiosensor project word cloud

Explore the words cloud of the GrapheneBiosensor project. It provides you a very rough idea of what is the project "GrapheneBiosensor" about.

times    immunosensors    toxin    cyanobacteria    detergents    harmful    off    expensive    sophisticated    prevent    humans    situ    skills    poisonings    ms    health    conductivity    limit    potent    microcystin    contained    ppl    inhibiting    portable    responsible    microcystins    mass    laboratory    mc    occurrence    drinking    agricultural    intrahepatic    broad    surface    episodes    ing    damage    toxic    urban    phosphatases    area    hemorrhage    mu    rapid    blue    spectrometry    guideline    algae    anthropogenic    had    hplc    pp2a    lr    material    purpose    waste    monitoring    animals    consuming    biochemical    detect    worldwide    confirmed    bodies    demanding    organization    performance    assigned    global    frequently    followed    blooms    conventional    fit    graphene    protein    instruments    sources    alternatives    prolonged    sensitive    functionalization    water    candidate    provisional    2a    assays    liquid    quality    aqueous    exposure    liver    algal    physical    electrochemically    massive    world    electrochemical    biosensors    time    manufacturing    chromatography    run    electrical    potentials    active    immune    bio    solutions    eutrophication    probably    acute    death    warming    1998    ease    concentration   

Project "GrapheneBiosensor" data sheet

The following table provides information about the project.

Coordinator
SWANSEA UNIVERSITY 

Organization address
address: SINGLETON PARK
city: SWANSEA
postcode: SA2 8PP
website: www.swan.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-26   to  2019-11-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SWANSEA UNIVERSITY UK (SWANSEA) coordinator 195˙454.00

Map

 Project objective

Episodes of harmful blue algae blooms and the associated algal toxin microcystin-LR (MC-LR) occur frequently in bodies of water worldwide as consequences of eutrophication resulting from anthropogenic activities such as agricultural run-off, urban waste, and manufacturing of detergents and global warming. It had been confirmed that microcystins were responsible for some poisonings of animals and humans where water sources contained toxic cyanobacteria blooms. Microcystins were potent and specific in inhibiting protein phosphatases 1 and 2A (PPl, PP2A). Acute or prolonged exposure to microcystins would cause liver damage, followed by a massive intrahepatic hemorrhage and probably leading to death. In 1998, the provisional guideline concentration limit of 1 μg/L MC-LR in drinking water was assigned by the World Health Organization (WHO). The development of reliable methods for monitoring MC-LR in water resources is of great interest to determine the occurrence and to prevent exposure to the toxin. Several methods have been developed to detect MC-LR, such as high-performance liquid chromatography/mass spectrometry (HPLC/MS) , bio-, biochemical- and immune-assays, which require long processing times, sophisticated instruments, complex procedures, or high processing cost and are in general used in the laboratory, not in situ. A sensitive, specific, simple, and rapid method for monitoring MC-LR could help to prevent exposure to the toxin. The unique physical and electrochemical properties (e.g., high electrical conductivity, ease of functionalization, high electrochemically active surface area, and broad range of working potentials in aqueous solutions) of graphene make them a candidate material for developing novel and fit-for-purpose electrochemical biosensors/immunosensors as alternatives to the time-consuming, expensive, non-portable and often skills-demanding conventional methods of analysis involved in water quality assessment.

 Publications

year authors and title journal last update
List of publications.
2018 Wei Zhang, Mike B. Dixon, Christopher Saint, Kar Seng Teng, Hiroaki Furumai
Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art
published pages: 1233-1245, ISSN: 2379-3694, DOI: 10.1021/acssensors.8b00359
ACS Sensors 3/7 2020-02-27
2018 Wei Zhang, Baoping Jia, Hiroaki Furumai
Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-28959-w
Scientific Reports 8/1 2020-02-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAPHENEBIOSENSOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAPHENEBIOSENSOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

AsymmFlow (2020)

Go with the continuous flow: Asymmetric Synthesis of Bioactive Alkaloids by Multistep Continuous-Flow Processes

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

STMICRO (2020)

Space-time visualization of microelectronic chip operation with femtosecond electron microscopy

Read More