Opendata, web and dolomites


Multidimensional CRISPR/Cas mediated engineering of plant breeding

Total Cost €


EC-Contrib. €






 CRISBREED project word cloud

Explore the words cloud of the CRISBREED project. It provides you a very rough idea of what is the project "CRISBREED" about.

indirectly    genomic    laid    respective    techniques    cereals    abiotic    initiation    became    cas9    meiotic    proximity    expression    linked    time    single    traits    amount    free    half    engineer    ing    plant    dna    close    breeding    translocations    safeguarded    transgene    varieties    break    restructuring    multiple    tightly    crops    orthologues    banks    adverse    engineering    chromosomal    coupled    favourite    simultaneously    sgrnas    sites    full    biotechnology    action    biology    countless    inducing    pool    induce    crossovers    fix    somatic    gene    fact    species    plants    genetic    lesions    survive    site    influencing    pyogenes    molecular    inversions    biotic    stranded    segments    tremendous    chromosome    agriculture    stresses    crop    induction    double    transfer    basis    combining    efficient    located    recombination    linkages    carries    accessed    nuclease    sustainable    fixing    cas    hardly    multidimensional    genes    breaks    perform    wild    crispr    regarding    breaking    worldwide    revolutionised    genome   

Project "CRISBREED" data sheet

The following table provides information about the project.


Organization address
postcode: 76131

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙499˙981 €
 EC max contribution 2˙499˙981 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-ADG
 Funding Scheme ERC-ADG
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2022-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The implementation of CRISPR/Cas technology has already revolutionised biology and biotechnology. However, for plant breeding its full potential has hardly been applied. The gene pool of a plant species carries a tremendous amount of information regarding how to survive best under various biotic and abiotic stresses. Although countless wild varieties of crops have been safeguarded in gene banks worldwide, much of their genetic information cannot be used in agriculture. Often, adverse and/or favourite traits are linked due to the fact that respective genes are located within close proximity, on the same chromosome. Breeding aims not only to break linkages between such traits but also to tightly fix favourable linkages. In cereals, half of the genome cannot be accessed by classical breeding. The aim of this proposal is to develop techniques based on CRISPR/Cas technology, to engineer plant breeding on the molecular level. With the use of the Cas9 nuclease of S. pyogenes and multiple sgRNAs, it became possible to induce several genomic changes at the same time. The aim of this proposal is to perform genome engineering on a multidimensional level by not only inducing multiple DNA lesions (single and double stranded breaks) but also by applying different Cas9 orthologues to simultaneously target DNA recombination factors directly to the sites of action, or indirectly by influencing their expression. Thus, site-specific initiation of recombination should be coupled with pathway choice, resulting in novel approaches for breaking or fixing linkages. Techniques for genome restructuring, like inversions and translocations, should be established as well as efficient induction of somatic and meiotic crossovers. Therefore, the basis should be laid for combining the best available traits of a species, resulting in transgene free crop plants for a sustainable agriculture. Furthermore, the Cas9-controlled transfer of chromosomal segments between species will also be addressed.


year authors and title journal last update
List of publications.
2019 Janina Enderle, Annika Dorn, Natalja Beying, Oliver Trapp, Holger Puchta
The protease WSS1A, the endonuclease MUS81 and the phosphodiesterase TDP1 are involved in independent pathways of DNA-protein crosslink repair in plants
published pages: tpc.00824.2018, ISSN: 1040-4651, DOI: 10.1105/tpc.18.00824
The Plant Cell 2019-05-15
2019 Carla Schmidt, Michael Pacher, Holger Puchta
Efficient induction of heritable inversions in plant genomes using the CRISPR /Cas system
published pages: , ISSN: 0960-7412, DOI: 10.1111/tpj.14322
The Plant Journal 2019-05-15
2018 Sarah Röhrig, Annika Dorn, Janina Enderle, Angelina Schindele, Natalie J. Herrmann, Alexander Knoll, Holger Puchta
The RecQ-like helicase HRQ1 is involved in DNA crosslink repair in Arabidopsis in a common pathway with the Fanconi anemia-associated nuclease FAN1 and the postreplicative repair ATPase RAD5A
published pages: 1478-1490, ISSN: 0028-646X, DOI: 10.1111/nph.15109
New Phytologist 218/4 2019-05-15
2018 Felix Wolter, Holger Puchta
The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists
published pages: 767-775, ISSN: 0960-7412, DOI: 10.1111/tpj.13899
The Plant Journal 94/5 2019-05-15
2018 Annika Dorn, Sarah Röhrig, Kristin Papp, Susan Schröpfer, Frank Hartung, Alexander Knoll, Holger Puchta
The topoisomerase 3α zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates
published pages: e1007674, ISSN: 1553-7404, DOI: 10.1371/journal.pgen.1007674
PLOS Genetics 14/9 2019-05-15
2018 Patrick Schindele, Felix Wolter, Holger Puchta
Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13
published pages: 1954-1967, ISSN: 0014-5793, DOI: 10.1002/1873-3468.13073
FEBS Letters 592/12 2019-05-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CRISBREED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CRISBREED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

SPA4AstroQIT (2019)

Broadband Quantum-Limited Parametric Amplifier for Astronomy and Quantum Information Technology

Read More