Opendata, web and dolomites

HYPERION SIGNED

HYbrid PERovskites for Next GeneratION Solar Cells and Lighting

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HYPERION project word cloud

Explore the words cloud of the HYPERION project. It provides you a very rough idea of what is the project "HYPERION" about.

an    scalable    scales    theoretical    structural    comprise    devising    pv    simultaneously    energy    26    efficiencies    broad    grain    illuminate    revolutionise    groundbreaking    discoveries    tandem    promise    solution    functional    emitting    ionic    perovskites    losses    yield    fundamental    bandgap    crystalline    hierarchical    implementing    realise    rising    films    science    local    treatments    surpassing    poised    secure    limits    efficiency    silicon    hybrid    materials    exceptionally    thin    gaps    full    fluorescent    ev    instabilities    semiconductor    interfaces    granular    origins    sustainable    elucidating    light    power    white    pushing    versatile    diodes    reaching    leds    optoelectronic    eliminated    performance    fundamentally    routes    radiative    eliminate    ion    sub    fast    tunable    decay    correlated    efficacies    parasitic    segregation    boundary    led    fall    class    solar    exceeding    lm    characterises    compositional    efficient    performing    operation    structures    units    hyperion    passivation    chemical    perovskite    photovoltaics   

Project "HYPERION" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙759˙732 €
 EC max contribution 1˙759˙732 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-11-01   to  2022-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙759˙732.00

Map

 Project objective

An emerging class of materials called hybrid perovskites is poised to revolutionise how power is both produced and consumed by enabling the production of highly-efficient, tunable solar photovoltaics (PV) and light-emitting diodes (LEDs) at exceptionally low cost. Although the efficiencies of perovskite devices are rising fast, both PV and LEDs fall short of out-performing current technology and reaching their theoretical performance limits. To achieve their full potential, parasitic non-radiative losses and bandgap instabilities from ionic segregation must be fundamentally understood and eliminated. HYPERION will address these issues by i) elucidating the origins of non-radiative decay and ion segregation in films and devices, ii) devising means to eliminate these processes, and iii) implementing optimised materials into boundary-pushing PV and LED devices. This will be achieved through a groundbreaking hierarchical analysis of the perovskite structures that not only characterises thin films and interfaces, but also the sub-units that comprise them, including grain-to-grain and sub-granular properties. The optoelectronic behaviour on these scales will be simultaneously correlated with local structural and chemical properties. HYPERION will use this fundamental understanding to eliminate non-radiative losses and ionic segregation on all scales through passivation treatments and compositional control. Addressing these knowledge gaps in the operation of perovskites will produce fundamental semiconductor science discoveries as well as illuminate routes to yield optimised and functional perovskites across the broad bandgap range 1.2–3.0 eV. These will be used to demonstrate all-perovskite tandem PV devices with efficiency exceeding crystalline silicon (26%), and white light LEDs with efficacies surpassing fluorescent light (50 lm/W). The work will realise the promise of perovskite technology as a versatile and scalable energy solution to secure a sustainable future.

 Publications

year authors and title journal last update
List of publications.
2018 Mojtaba Abdi-Jalebi, Zahra Andaji-Garmaroudi, Stefania Cacovich, Camille Stavrakas, Bertrand Philippe, Johannes M. Richter, Mejd Alsari, Edward P. Booker, Eline M. Hutter, Andrew J. Pearson, Samuele Lilliu, Tom J. Savenije, Håkan Rensmo, Giorgio Divitini, Caterina Ducati, Richard H. Friend, Samuel D. Stranks
Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
published pages: 497-501, ISSN: 0028-0836, DOI: 10.1038/nature25989
Nature 555/7697 2020-01-30
2018 Mojtaba Abdi-Jalebi, Zahra Andaji-Garmaroudi, Andrew J. Pearson, Giorgio Divitini, Stefania Cacovich, Bertrand Philippe, Håkan Rensmo, Caterina Ducati, Richard H. Friend, Samuel D. Stranks
Potassium- and Rubidium-Passivated Alloyed Perovskite Films: Optoelectronic Properties and Moisture Stability
published pages: 2671-2678, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.8b01504
ACS Energy Letters 3/11 2020-01-30
2018 Bernhard J. Bohn, Yu Tong, Moritz Gramlich, May Ling Lai, Markus Döblinger, Kun Wang, Robert L. Z. Hoye, Peter Müller-Buschbaum, Samuel D. Stranks, Alexander S. Urban, Lakshminarayana Polavarapu, Jochen Feldmann
Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair
published pages: 5231-5238, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.8b02190
Nano Letters 18/8 2020-01-30
2019 Timothy W. Jones, Anna Osherov, Mejd Alsari, Melany Sponseller, Benjamin C. Duck, Young-Kwang Jung, Charles Settens, Farnaz Niroui, Roberto Brenes, Camelia V. Stan, Yao Li, Mojtaba Abdi-Jalebi, Nobumichi Tamura, J. Emyr Macdonald, Manfred Burghammer, Richard H. Friend, Vladimir Bulović, Aron Walsh, Gregory J. Wilson, Samuele Lilliu, Samuel D. Stranks
Lattice strain causes non-radiative losses in halide perovskites
published pages: 596-606, ISSN: 1754-5692, DOI: 10.1039/c8ee02751j
Energy & Environmental Science 12/2 2020-01-30
2018 Samuel D. Stranks, Robert L. Z. Hoye, Dawei Di, Richard H. Friend, Felix Deschler
The Physics of Light Emission in Halide Perovskite Devices
published pages: 1803336, ISSN: 0935-9648, DOI: 10.1002/adma.201803336
Advanced Materials 1 2020-01-30
2018 Camille Stavrakas, Ayan A. Zhumekenov, Roberto Brenes, Mojtaba Abdi-Jalebi, Vladimir Bulović, Osman M. Bakr, Edward S. Barnard, Samuel D. Stranks
Probing buried recombination pathways in perovskite structures using 3D photoluminescence tomography
published pages: 2846-2852, ISSN: 1754-5692, DOI: 10.1039/c8ee00928g
Energy & Environmental Science 11/10 2020-01-30
2018 Samuel D. Stranks, Paulina Plochocka
The influence of the Rashba effect
published pages: 381-382, ISSN: 1476-1122, DOI: 10.1038/s41563-018-0067-8
Nature Materials 17/5 2020-01-30

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYPERION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYPERION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FHiCuNCAG (2019)

Foundations for Higher and Curved Noncommutative Algebraic Geometry

Read More  

PIcelles (2018)

Penetration-promoting and Imageable Polymeric Micelles as a Platform Technology for Individualized and Improved Tumor-targeted Drug Delivery

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More