Opendata, web and dolomites

PROMETHEUS SIGNED

Flame nanoengineering for antibacterial medical devices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PROMETHEUS project word cloud

Explore the words cloud of the PROMETHEUS project. It provides you a very rough idea of what is the project "PROMETHEUS" about.

health    device    commercial    worldwide    implants    substrates    photothermal    threat    maintained    hybrid    resistant    combining    powders    quite    hr    life    osteogenic    constitutes    nanoparticle    last    microneedle    reactors    smart    antimicrobial    direct    utilize    self    decade    commodity    materials    assembly    nanoparticles    aerosol    poor    discoveries    scalability    hinders    single    threatening    estimations    skin    synthesis    resistance    engineering    human    principles    layer    antibiotic    medical    inherent    designing    labs    bacteria    commercialization    integration    deposition    engineers    serious    basic    translated    little    innovative    assist    deaths    outcome    limitations    successful    nanoscale    functional    too    reproducibility    nanomanufacture    drug    flame    patch    nanotechnology    understudied    few    antibacterial    infections    famous    close    triggered    medicine    nanocoatings    public    tons    fight    physicochemical    generation   

Project "PROMETHEUS" data sheet

The following table provides information about the project.

Coordinator
KAROLINSKA INSTITUTET 

Organization address
address: Nobels Vag 5
city: STOCKHOLM
postcode: 17177
website: www.ki.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 1˙812˙500 €
 EC max contribution 1˙812˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2023-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KAROLINSKA INSTITUTET SE (STOCKHOLM) coordinator 1˙812˙500.00

Map

 Project objective

Engineers in nanotechnology research labs have been quite innovative the last decade in designing nanoscale materials for medicine. However, very few of these exciting discoveries are translated to commercial medical products today. The main reasons for this are two inherent limitations of most nanomanufacture processes: scalability and reproducibility. There is too little knowledge on how well the unique properties associated with nanoparticles are maintained during their large-scale production while often poor reproducibility hinders their successful use. A key goal here is to utilize a nanomanufacture process famous for its scalability and reproducibility, flame aerosol reactors that produce at tons/hr commodity powders, and advance the knowledge for synthesis of complex nanoparticles and their direct integration in medical devices. Our aim is to develop the next generation of antibacterial medical devices to fight antimicrobial resistance, a highly understudied field. Antimicrobial resistance constitutes the most serious public health threat today with estimations to become the leading cause of human deaths in 30 years. We focus on flame direct nanoparticle deposition on substrates combining nanoparticle production and functional layer deposition in a single-step with close attention to product nanoparticle properties and device assembly, extending beyond the simple commodity powders of the past. Specific targets here are two devices; a) hybrid drug microneedle patch with photothermal nanoparticles to fight life-threatening skin infections from drug-resistant bacteria and b) smart nanocoatings on implants providing both osteogenic and self-triggered antibacterial properties. The engineering approach for the development of antibacterial devices will provide insight into the basic physicochemical principles to assist in commercialization while the outcome of this research will help the fight against antibiotic resistance improving the public health worldwide.

 Publications

year authors and title journal last update
List of publications.
2019 Dorian F. Henning, Padryk Merkl, Changhun Yun, Federico Iovino, Ling Xie, Eleftherios Mouzourakis, Constantinos Moularas, Yiannis Deligiannakis, Birgitta Henriques-Normark, Klaus Leifer, Georgios A. Sotiriou
Luminescent CeO2:Eu3+ nanocrystals for robust in situ H2O2 real-time detection in bacterial cell cultures
published pages: 286-293, ISSN: 0956-5663, DOI: 10.1016/j.bios.2019.03.012
Biosensors and Bioelectronics 132 2019-11-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROMETHEUS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROMETHEUS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More