Opendata, web and dolomites

PROMETHEUS SIGNED

Flame nanoengineering for antibacterial medical devices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PROMETHEUS project word cloud

Explore the words cloud of the PROMETHEUS project. It provides you a very rough idea of what is the project "PROMETHEUS" about.

flame    bacteria    direct    device    generation    functional    resistance    public    quite    hinders    commercialization    medical    resistant    commodity    labs    little    medicine    antibiotic    integration    osteogenic    serious    photothermal    drug    patch    antimicrobial    engineering    decade    reactors    poor    nanoscale    nanocoatings    too    discoveries    deposition    smart    successful    nanoparticle    constitutes    nanotechnology    physicochemical    famous    engineers    self    antibacterial    maintained    nanomanufacture    implants    last    powders    fight    estimations    materials    principles    innovative    inherent    outcome    infections    aerosol    utilize    few    scalability    assist    close    limitations    commercial    hr    reproducibility    human    translated    layer    worldwide    designing    microneedle    assembly    skin    deaths    health    threatening    understudied    substrates    combining    basic    synthesis    hybrid    triggered    threat    nanoparticles    life    single    tons   

Project "PROMETHEUS" data sheet

The following table provides information about the project.

Coordinator
KAROLINSKA INSTITUTET 

Organization address
address: Nobels Vag 5
city: STOCKHOLM
postcode: 17177
website: www.ki.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 1˙812˙500 €
 EC max contribution 1˙812˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2023-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KAROLINSKA INSTITUTET SE (STOCKHOLM) coordinator 1˙812˙500.00

Map

 Project objective

Engineers in nanotechnology research labs have been quite innovative the last decade in designing nanoscale materials for medicine. However, very few of these exciting discoveries are translated to commercial medical products today. The main reasons for this are two inherent limitations of most nanomanufacture processes: scalability and reproducibility. There is too little knowledge on how well the unique properties associated with nanoparticles are maintained during their large-scale production while often poor reproducibility hinders their successful use. A key goal here is to utilize a nanomanufacture process famous for its scalability and reproducibility, flame aerosol reactors that produce at tons/hr commodity powders, and advance the knowledge for synthesis of complex nanoparticles and their direct integration in medical devices. Our aim is to develop the next generation of antibacterial medical devices to fight antimicrobial resistance, a highly understudied field. Antimicrobial resistance constitutes the most serious public health threat today with estimations to become the leading cause of human deaths in 30 years. We focus on flame direct nanoparticle deposition on substrates combining nanoparticle production and functional layer deposition in a single-step with close attention to product nanoparticle properties and device assembly, extending beyond the simple commodity powders of the past. Specific targets here are two devices; a) hybrid drug microneedle patch with photothermal nanoparticles to fight life-threatening skin infections from drug-resistant bacteria and b) smart nanocoatings on implants providing both osteogenic and self-triggered antibacterial properties. The engineering approach for the development of antibacterial devices will provide insight into the basic physicochemical principles to assist in commercialization while the outcome of this research will help the fight against antibiotic resistance improving the public health worldwide.

 Publications

year authors and title journal last update
List of publications.
2019 Dorian F. Henning, Padryk Merkl, Changhun Yun, Federico Iovino, Ling Xie, Eleftherios Mouzourakis, Constantinos Moularas, Yiannis Deligiannakis, Birgitta Henriques-Normark, Klaus Leifer, Georgios A. Sotiriou
Luminescent CeO2:Eu3+ nanocrystals for robust in situ H2O2 real-time detection in bacterial cell cultures
published pages: 286-293, ISSN: 0956-5663, DOI: 10.1016/j.bios.2019.03.012
Biosensors and Bioelectronics 132 2019-11-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROMETHEUS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROMETHEUS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More