Opendata, web and dolomites


Modelling cortical information flow during visuomotor adaptation as active inference in the human brain

Total Cost €


EC-Contrib. €






 ViMoAct project word cloud

Explore the words cloud of the ViMoAct project. It provides you a very rough idea of what is the project "ViMoAct" about.

lacks    relies    suggests    movement    gap    proprioceptive    bayesian    stimulus    sensory    hemodynamic    precision    public    world    endogenous    visual    conflicts    explains    brain    environment    energy    allocation    actions    prediction    assumption    optimal    bayes    motor    predictive    weighting    principles    relative    either    models    feedback    attentional    free    errors    virtual    belief    active    flow    move    hierarchical    close    self    thereby    mr    inference    generative    formal    dynamic    recent    model    follows    photorealistic    error    causal    predicted    cortical    updating    empirical    multiple    bodily    appeals    suppression    experimentally    visuoproprioceptive    data    movements    optimise    hierarchy    requiring    predictions    noise    previously    manipulated    investigation    glove    delayed    cognitive    representation    interdisciplinary    modelled    visuomotor    updated    function    coding    manual    contribution    experiment    instructed    determines    exchange    fmri    levels    experiments    tested    spectral    filtering    meg    compatible    perform    generalised    tracking   

Project "ViMoAct" data sheet

The following table provides information about the project.


Organization address
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-11-01   to  2020-05-02


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 183˙454.00


 Project objective

Recent research suggests that to control bodily movements the brain relies on Bayes-optimal predictive models that are updated by sensory prediction error. This assumption may be generalised within a new formal account of motor control as active (Bayesian) inference. Active inference explains motor control in terms of hierarchical Bayesian filtering or predictive coding, i.e., as belief updating and suppression of prediction error to optimise a hierarchical generative model in the brain; thereby the weighting of prediction errors by their predicted precision determines their relative impact on hierarchical inference. This novel proposal still lacks concrete empirical investigation. The proposed project will close this research gap by testing whether cortical information flow during manual actions, requiring visuomotor adaptation and cognitive control of attention, follows the principles of active inference. In two fMRI experiments and one MEG experiment, participants will move a photorealistic virtual hand model via an MR-compatible data glove to perform simple manual tracking tasks in a virtual reality environment. The precision of prediction errors at multiple levels of a previously established cortical motor control hierarchy will be experimentally manipulated via visuoproprioceptive conflicts (introduced by delayed visual movement feedback) and via attentional allocation – either stimulus-driven (via increased sensory noise) or endogenous (instructed) – to visual or proprioceptive movement feedback. Active inference’s specific predictions about information flow between and within cortical areas will be tested with recently established dynamic causal modelling of the modelled hemodynamic (fMRI) or spectral (MEG) responses. Active inference appeals to a general free-energy principle of brain function; this contribution will thus promote interdisciplinary exchange of knowledge about self- and world-representation in the brain and will be of general public interest.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VIMOACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VIMOACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More  

NeuroSens (2019)

Neuromodulation of Sensory Processing

Read More