Opendata, web and dolomites

ViMoAct SIGNED

Modelling cortical information flow during visuomotor adaptation as active inference in the human brain

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ViMoAct project word cloud

Explore the words cloud of the ViMoAct project. It provides you a very rough idea of what is the project "ViMoAct" about.

movements    experiment    attentional    filtering    weighting    self    actions    energy    experimentally    free    causal    investigation    cortical    hierarchical    modelled    flow    prediction    generalised    brain    error    hemodynamic    lacks    stimulus    manual    feedback    delayed    active    conflicts    close    recent    follows    sensory    movement    perform    gap    public    world    multiple    predicted    updated    motor    proprioceptive    bayes    bayesian    visual    allocation    mr    errors    principles    compatible    meg    noise    updating    generative    bodily    coding    optimise    manipulated    precision    determines    optimal    spectral    predictions    suggests    data    belief    explains    tested    glove    requiring    photorealistic    tracking    contribution    visuomotor    function    exchange    levels    assumption    appeals    fmri    model    move    predictive    previously    environment    hierarchy    either    cognitive    endogenous    thereby    instructed    empirical    inference    experiments    interdisciplinary    models    relies    suppression    dynamic    relative    virtual    representation    formal    visuoproprioceptive   

Project "ViMoAct" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-11-01   to  2020-05-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Recent research suggests that to control bodily movements the brain relies on Bayes-optimal predictive models that are updated by sensory prediction error. This assumption may be generalised within a new formal account of motor control as active (Bayesian) inference. Active inference explains motor control in terms of hierarchical Bayesian filtering or predictive coding, i.e., as belief updating and suppression of prediction error to optimise a hierarchical generative model in the brain; thereby the weighting of prediction errors by their predicted precision determines their relative impact on hierarchical inference. This novel proposal still lacks concrete empirical investigation. The proposed project will close this research gap by testing whether cortical information flow during manual actions, requiring visuomotor adaptation and cognitive control of attention, follows the principles of active inference. In two fMRI experiments and one MEG experiment, participants will move a photorealistic virtual hand model via an MR-compatible data glove to perform simple manual tracking tasks in a virtual reality environment. The precision of prediction errors at multiple levels of a previously established cortical motor control hierarchy will be experimentally manipulated via visuoproprioceptive conflicts (introduced by delayed visual movement feedback) and via attentional allocation – either stimulus-driven (via increased sensory noise) or endogenous (instructed) – to visual or proprioceptive movement feedback. Active inference’s specific predictions about information flow between and within cortical areas will be tested with recently established dynamic causal modelling of the modelled hemodynamic (fMRI) or spectral (MEG) responses. Active inference appeals to a general free-energy principle of brain function; this contribution will thus promote interdisciplinary exchange of knowledge about self- and world-representation in the brain and will be of general public interest.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VIMOACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VIMOACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More