Opendata, web and dolomites

ViMoAct SIGNED

Modelling cortical information flow during visuomotor adaptation as active inference in the human brain

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ViMoAct project word cloud

Explore the words cloud of the ViMoAct project. It provides you a very rough idea of what is the project "ViMoAct" about.

environment    tested    belief    investigation    interdisciplinary    spectral    dynamic    mr    instructed    prediction    precision    hierarchical    sensory    proprioceptive    recent    modelled    bayesian    determines    predicted    endogenous    experimentally    motor    manual    photorealistic    movements    compatible    noise    relies    principles    error    assumption    causal    formal    delayed    suggests    cognitive    bayes    thereby    perform    updating    world    inference    optimal    generalised    previously    bodily    conflicts    stimulus    either    manipulated    model    visuoproprioceptive    hemodynamic    flow    free    glove    active    appeals    movement    move    close    virtual    public    brain    experiment    self    predictions    explains    data    updated    multiple    visuomotor    weighting    coding    tracking    actions    levels    hierarchy    suppression    contribution    empirical    optimise    energy    generative    meg    cortical    experiments    attentional    errors    follows    representation    exchange    visual    fmri    filtering    gap    allocation    requiring    feedback    lacks    predictive    models    relative    function   

Project "ViMoAct" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-11-01   to  2020-05-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Recent research suggests that to control bodily movements the brain relies on Bayes-optimal predictive models that are updated by sensory prediction error. This assumption may be generalised within a new formal account of motor control as active (Bayesian) inference. Active inference explains motor control in terms of hierarchical Bayesian filtering or predictive coding, i.e., as belief updating and suppression of prediction error to optimise a hierarchical generative model in the brain; thereby the weighting of prediction errors by their predicted precision determines their relative impact on hierarchical inference. This novel proposal still lacks concrete empirical investigation. The proposed project will close this research gap by testing whether cortical information flow during manual actions, requiring visuomotor adaptation and cognitive control of attention, follows the principles of active inference. In two fMRI experiments and one MEG experiment, participants will move a photorealistic virtual hand model via an MR-compatible data glove to perform simple manual tracking tasks in a virtual reality environment. The precision of prediction errors at multiple levels of a previously established cortical motor control hierarchy will be experimentally manipulated via visuoproprioceptive conflicts (introduced by delayed visual movement feedback) and via attentional allocation – either stimulus-driven (via increased sensory noise) or endogenous (instructed) – to visual or proprioceptive movement feedback. Active inference’s specific predictions about information flow between and within cortical areas will be tested with recently established dynamic causal modelling of the modelled hemodynamic (fMRI) or spectral (MEG) responses. Active inference appeals to a general free-energy principle of brain function; this contribution will thus promote interdisciplinary exchange of knowledge about self- and world-representation in the brain and will be of general public interest.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VIMOACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VIMOACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More